Keywords
bibliometry; chemistry education research trends; microscale chemistry; software
Document Type
Article
Abstract
This research aims to reveal the distribution of microscale chemistry research related to publication output, document sources, microscale chemistry publishing countries; countries of correspondent authors on microscale chemistry; number of annual distribution of publication affiliations of microscale chemistry; distribution of microscale chemistry publication sources; the most relevant author in microscale chemistry publications; visualization of microscale chemistry research topics and trends. The method used is a bibliometric study sourced from the scopus.com database. Data were collected through searching publications with the keyword "microscale and chemistry" in the title, abstract, or keywords determined by the author, limited to the last 10 years (2013-2023), and managed and analyzed using Software R with Biblioshiny. The results show that there is a 10-year limitation, 196 publications were obtained. The top country to publish it is the USA. The country with the most correspondent authors of a single type is the USA. The distribution analysis result shows the research topic produces data on 1000 items with 19 clusters, with the most frequently used keywords being "microscale lab", "chemistry", and "green chemistry". The existence of microscale chemistry can make chemistry practicum activities easier, providing an alternative to chemistry practicum for those who are hampered by laboratory problems.
First Page
10
Last Page
23
Issue
1
Volume
10
Digital Object Identifier (DOI)
10.21831/jipi.v10i1.68835
DOI Link
https://doi.org/10.21831/jipi.v10i1.68835
Recommended Citation
Hidayah, F. F., Indriyanti, D. R., & Madnasari, S. (2024). What is the Image of Microscale Chemistry Research for Chemistry Teaching in 2013-2023?. Jurnal Inovasi Pendidikan IPA, 10(1), 10-23. https://doi.org/10.21831/jipi.v10i1.68835
References
Abraham, L., Stachow, L., & Du, H. (2020). Cinnamon Oil: An Alternate and Inexpensive Resource for Green Chemistry Experiments in Organic Chemistry Laboratory. Journal of Chemical Education, 97(10). https://doi.org/10.1021/acs.jchemed.0c00851
Agustini, D., Bergamini, M. F., & Marcolino-Junior, L. H. (2018). Simple and Inexpensive Microfluidic Thread Based Device for Teaching Microflow Injection Analysis and Electrochemistry. Journal of Chemical Education, 95(8). https://doi.org/10.1021/acs.jchemed.8b00211
Antoro*, A. D., Sayuti, M., & Biddinika, M. K. (2023). Analisis Bibliografi Artikel Jurnal Pendidikan Kejuruan di Indonesia. JIM: Jurnal Ilmiah Mahasiswa Pendidikan Sejarah, 8(2). https://doi.org/10.24815/jimps.v8i2.24588
Armenta, S., Esteve-Turrillas, F. A., & Herrero-Martínez, J. M. (2020). Development and Evaluation of Paper-Based Devices for Iron(III) Determination in an Advanced Undergraduate Laboratory. Journal of Chemical Education, 97(10). https://doi.org/10.1021/acs.jchemed.0c00369
Bell, B., & Bradley, J. (2012). Microchemistry in Africa A Reassessment. African Journal of Chemical Education, 2(1).
Cai, L., Wu, Y., Xu, C., & Chen, Z. (2013). A simple paper-based microfluidic device for the determination of the total amino acid content in a tea leaf extract. Journal of Chemical Education, 90(2), 232 – 234. https://doi.org/10.1021/ed300385j
Cai, L., Zhang, X., Luo, L., Lin, H., Chen, J., Xu, C., Zhong, M., & Liao, X. (2019). Visual Quantification of Fe on Cotton Thread Using a Ruler. Journal of Chemical Education, 96(7). https://doi.org/10.1021/acs.jchemed.8b00800
Cesin-AbouAtme, T., Lopez-Almeida, C. G., Molina-Labastida, G., & Ibanez, J. G. (2021). Light-Emitting Diodes as Voltage Generators: Demonstrating the Fuel Cell Principle with Low-Cost, Magnetically Enhanced, Homemade Solar Electrolysis. Journal of Chemical Education, 98(9). https://doi.org/10.1021/acs.jchemed.1c00093
Ciaccio, J. A., & Ak, B. (2022). Rapid Isolation of Plant Essential Oil Components by Small-Scale Dry Column Vacuum Chromatography: An Experiment Combining Natural Product Isolation and Antibacterial Testing. Journal of Chemical Education, 99(7). https://doi.org/10.1021/acs.jchemed.2c00380
Ciaccio, J. A., & Hassan, K. (2020). Modified Method for Extraction of Photosynthetic Plant Pigments for Microcolumn Chromatography. Journal of Chemical Education, 97(8). https://doi.org/10.1021/acs.jchemed.0c00503
Das, K. R., & Antony, M. J. (2022). Microscale Redox Titrations Using Poly- N-phenyl Anthranilic Acid Fluorescent Turn-Off Indicator for Undergraduate Analytical Chemistry Lab. Journal of Chemical Education, 99(2). https://doi.org/10.1021/acs.jchemed.0c01354
Davis, T. A., Athey, S. L., Vandevender, M. L., Crihfield, C. L., Kolanko, C. C. E., Shao, S., Ellington, M. C. G., Dicks, J. K., Carver, J. S., & Holland, L. A. (2015). Electrolysis of water in the secondary school science laboratory with inexpensive microfluidics. Journal of Chemical Education, 92(1). https://doi.org/10.1021/ed400757m
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133. https://doi.org/10.1016/j.jbusres.2021.04.070
Duangpummet, P., Chaiyen, P., & Chenprakhon, P. (2019). Lipase-Catalyzed Esterification: An Inquiry-Based Laboratory Activity To Promote High School Students’ Understanding and Positive Perceptions of Green Chemistry. Journal of Chemical Education, 96(6). https://doi.org/10.1021/acs.jchemed.8b00855
Duarte, R. C. C., Ribeiro, M. G. T. C., & Machado, A. A. S. C. (2017). Reaction Scale and Green Chemistry: Microscale or Macroscale, Which Is Greener? Journal of Chemical Education, 94(9). https://doi.org/10.1021/acs.jchemed.7b00056
Fuangswasdi, S., Aeungmaitrepirom, W., Nilsom, V., Ralakhee, P., & Puthongkham, P. (2023). From In-Class Experiments to Lab@Home for General Chemistry Laboratory: Hands-On Experiences during the Pandemic Lockdown. Journal of Chemical Education, 100(2). https://doi.org/10.1021/acs.jchemed.2c00853
Goh, H. Y., Wong, W. W. C., & Ong, Y. Y. (2019). A Study to Reduce Chemical Waste Generated in Chemistry Teaching Laboratories. Journal of Chemical Education. https://doi.org/10.1021/acs.jchemed.9b00632
Gross, E. M. (2013). Green chemistry and sustainability: An undergraduate course for science and nonscience majors. Journal of Chemical Education, 90(4). https://doi.org/10.1021/ed200756z
Harrypersad, S., & Canal, J. P. (2023). The Synthesis of Ruthenocene─A Methodology Appropriate for the Inorganic Undergraduate Curriculum. Journal of Chemical Education, 100(3). https://doi.org/10.1021/acs.jchemed.2c01258
Hidayah, F. F., Gunawan, Yuliyanto, E., Qomariyah, S., Imaduddin, M., & Djunaidi, M. C. (2023). Strengthening Pedagogical Content Knowledge in Designing Laboratory Activity Based on Small-Scale Chemistry Practicum Approach. European Journal of Educational Research, 12(4). https://doi.org/10.12973/eu-jer.12.4.1631
Hidayah, F. F., Imaduddin, M., Yuliyanto, E., Gunawan, G., Djunaidi, M. C., & Tantayanon, S. (2022). “COUNTING DROPS AND OBSERVING COLOR”: TEACHERS’ AND STUDENTS’ FIRST EXPERIENCES IN SMALL-SCALE CHEMISTRY PRACTICUM OF ACID-BASE SOLUTIONS. Journal of Technology and Science Education, 12. https://doi.org/10.3926/JOTSE.1388
Hidayah, N., Puspa, A. A., & Apriyansa, A. (2021). Project-Based Learning (PjBL): Advantages, Disadvantages, and Solutions to Vocational Education (in Pandemic Era). Proceedings of the 3rd International Conference on Law, Social Sciences, and Education, 57.
Ifepe, N. U., & Anekwe, C. E. (2022). Microscale Experiments In Senior Secondary School Practical Chemistry: A Panacea For Improving Students’achievement And Reducing Cost. International Journal of Research in Education and Sustainable Development |, 2(7).
Kajornklin, P., Jarujamrus, P., Phanphon, P., Ngernpradab, P., Supasorn, S., Chairam, S., & Amatatongchai, M. (2020). Fabricating a Low-Cost, Simple, Screen Printed Paper Towel-Based Experimental Device to Demonstrate the Factors Affecting Chemical Equilibrium and Chemical Equilibrium Constant, K c. Journal of Chemical Education, 97(7), 1984–1991. https://doi.org/10.1021/acs.jchemed.9b00918
Kallepalli, S., Johnson, L., & Mattson, B. (2021). Diffusion of Gases into Air: A Simple Small-Scale Laboratory Activity. Journal of Chemical Education, 98(10), 3258–3262. https://doi.org/10.1021/acs.jchemed.1c00657
Kimel, H., Bradley, J. D., Durbach, S., Bell, B., & Mungarulire, J. (1998). Hands-On Practical Chemistry for All: Why and How? Journal of Chemical Education, 75(11). https://doi.org/10.1021/ed075p1406
Korman, M., Paz, E., Franklin, T., Lewandowski, N. R., Sullivan, B., Imhoff, A. M., Fisher, L., Bichler, K. A., & Van Ornum, S. G. (2020). Process Development of the Weiss–Cook Reaction for the Preparation of cis -1,5-Dimethylbicyclo[3.3.0]octane-3,7-dione in the Undergraduate Organic Laboratory. Journal of Chemical Education, 97(10), 3835–3838. https://doi.org/10.1021/acs.jchemed.9b00653
Koutsokali, M., & Valahas, M. (2020). Anaerobic and Aerobic Respiration in Yeast: Small-Scale Variations on a Classic Laboratory Activity. Journal of Chemical Education, 97(4), 1041–1047. https://doi.org/10.1021/acs.jchemed.9b00994
Lai, H., Li, Z., Zhu, S., Cai, L., Xu, C., & Zhou, Q. (2019). Naked-eye detection of aluminum in gastric drugs on a paper-based analytical device. Journal of Chemical Education, 295 – 299. https://doi.org/10.1021/acs.jchemed.9b00569
Lai, H., Li, Z., Zhu, S., Cai, L., Xu, C., & Zhou, Q. (2020). Naked-Eye Detection of Aluminum in Gastric Drugs on a Paper-Based Analytical Device. Journal of Chemical Education, 97(1), 295–299. https://doi.org/10.1021/acs.jchemed.9b00569
Lee, J., Schmink, J. R., & Berritt, S. (2020). Introduction of Low-Barrier High-Throughput Experimentation in the Undergraduate Laboratory: Suzuki—Miyaura Reaction. Journal of Chemical Education, 97(2), 538–542. https://doi.org/10.1021/acs.jchemed.9b00794
Limpanuparb, T., Kanithasevi, S., Lojanarungsiri, M., & Pakwilaikiat, P. (2019). Teaching Boyle’s Law and Charles’ Law through Experiments that Use Novel, Inexpensive Equipment Yielding Accurate Results. Journal of Chemical Education, 96(1), 169–174. https://doi.org/10.1021/acs.jchemed.8b00460
Lin, X., Jin, X., Xu, C., Lai, H., Lin, M., Ren, N., & Cai, L. (2023). Iodometric Titration on Microfluidic Paper-Based Analytical Devices for Determination of Ascorbic Acid: A Laboratory Experiment for Chemical Education Undergraduates. Journal of Chemical Education, 100(5), 1997–2002. https://doi.org/10.1021/acs.jchemed.2c01236
Lunelli, B., & Baroncini, M. (2020). Designing an Effective, Low-Cost, and Convenient Air-Cooled Semi-microscale and Small Scale Inverted Cone Vapor Condenser for Waterless Reflux Cooling. Journal of Chemical Education, 97(8), 2221–2225. https://doi.org/10.1021/acs.jchemed.0c00036
Mamlok-Naaman, R., & Barnea, N. (2012). Laboratory Activities in Israel. EURASIA Journal of Mathematics, Science and Technology Education, 8(1). https://doi.org/10.12973/eurasia.2012.816a
McKee, J. R., Zanger, M., Chiariello, C., McKee, J. A., Dorfner, W., Fasella, E., & Koo, Y. (2019). Semimicro/Microscale Adaptation of the Cobalt Chloride/Sodium Borohydride Reduction of Methyl Oleate. Journal of Chemical Education, 96(4), 772–775. https://doi.org/10.1021/acs.jchemed.8b00222
MD, P. A., & Elvaswer, E. (2017). Karakteristik I-V Heterokontak TiO2(CuO)/ZnO(TiO2) sebagai Sensor Gas Oksigen. Jurnal Fisika Unand, 6(1), 67–73. https://doi.org/10.25077/jfu.6.1.67-73.2017
Mohamed, N., Abdullah, M., & Ismail, Z. (2012). Ensuring Sustainability through Microscale Chemistry. In Green Chemistry for Environmental Remediation. https://doi.org/10.1002/9781118287705.ch5
Mohamed, N., Abdullah, M., & Ismail, Z. H. (2013). Practical Science Activities in Primary Schools in Malaysia. In Chemistry Education and Sustainability in the Global Age. https://doi.org/10.1007/978-94-007-4860-6_9
Mooney, M., Vreugdenhil, A. J., & Shetranjiwalla, S. (2020). A Toolkit of Green Chemistry and Life-Cycle Analysis for Comparative Assessment in Undergraduate Organic Chemistry Experiments: Synthesis of (E)-Stilbene. Journal of Chemical Education, 97(5). https://doi.org/10.1021/acs.jchemed.9b00697
Namwong, P., Jarujamrus, P., Amatatongchai, M., & Chairam, S. (2018). Fabricating Simple Wax Screen-Printing Paper-Based Analytical Devices to Demonstrate the Concept of Limiting Reagent in Acid-Base Reactions. Journal of Chemical Education, 95(2). https://doi.org/10.1021/acs.jchemed.7b00410
Nurfauzan, M. iqbal, & Faizatunnisa, H. (2021). Analisis Bibliometrik Trend Penelitian Covid-19 di Indonesia Pada Bidang Bisnis dan Manajemen. JURNAL BISNIS STRATEGI, 30(2). https://doi.org/10.14710/jbs.30.2.90-100
Paterson, D. J. (2019). Design and Evaluation of Integrated Instructions in Secondary-Level Chemistry Practical Work. Journal of Chemical Education, 96(11). https://doi.org/10.1021/acs.jchemed.9b00194
Pesimo, A. R. (2014). Developing the Learning Outcomes of the Students through Microscale Experiments in Chemistry. OALib, 01(03), 1–11. https://doi.org/10.4236/oalib.1100479
Phillips, T. W., Lignos, I. G., Maceiczyk, R. M., deMello, A. J., & deMello, J. C. (2014). Nanocrystal synthesis in microfluidic reactors: where next? Lab on a Chip, 14(17), 3172. https://doi.org/10.1039/C4LC00429A
Primdahl, K. G., Hansen, F. A., Solum, E. J., Nolsøe, J. M. J., & Aursnes, M. (2022). Introduction to Preparative Chromatography: Description of a Setup with Continuous Detection. Journal of Chemical Education, 99(6), 2372–2377. https://doi.org/10.1021/acs.jchemed.1c00917
Roller, R. M., Sumantakul, S., Tran, M., Van Wyk, A., Zinna, J., Donelson, D. A., Finnegan, S. G., Foley, G., Frechette, O. R., Gaetgens, J., Jiang, J., Rinaolo, K. C., Cole, R. S., Lieberman, M., Remcho, V. T., & Frederick, K. A. (2021). Inquiry-Based Laboratories Using Paper Microfluidic Devices. Journal of Chemical Education, 98(6), 1946–1953. https://doi.org/10.1021/acs.jchemed.1c00214
Sanders, W. C., Johnson, G., Valcarce, R., Iles, P., Fourt, H., Drystan, K., Edwards, D., Vernon, J., Ashworth, S., Barucija, A., & Curtis, Z. (2019). Electrodeposition of Silver Micro- and Nanoscale Wires in the Capillaries of PDMS Stamps Modified with Hydrophilic Polymers. Journal of Chemical Education, 96(6), 1218–1223. https://doi.org/10.1021/acs.jchemed.8b01053
Sanghi, R., & Singh, V. (2012). Green Chemistry for Environmental Remediation. In Green Chemistry for Environmental Remediation. https://doi.org/10.1002/9781118287705
Septiyanto, A., Ashidiq, R. M., Prima, E. C., & Riandi. (2023). Investigasi Tren Penelitian Pendidikan STEM: Analisis Bibliometrik dari Tahun 2018-2022. Proceeding Seminar Nasional IPA XIII, July.
Singh, M. M., Szafran, Z., & Pike, R. M. (1999). Microscale chemistry and Green Chemistry: Complementary Pedagogi. Journal of Chemical Education, 76(12).
Skinner, J. (1999). Microscale chemistry. The Royal Society of Chemistry.
Sun, M., Li, Z., & Yang, Q. (2019). μdroPi: A Hand-Held Microfluidic Droplet Imager and Analyzer Built on Raspberry Pi. Journal of Chemical Education, 96(6), 1152–1156. https://doi.org/10.1021/acs.jchemed.8b00975
Suryanto, E. (2008). Kimia oksigen singlet: sensitiser, cahaya dan reaktivitasnya terhadap asam lemak tak jenuh. Chem Prog, 1(2).
Tesfamariam, G. M., Lykknes, A., & Kvittingen, L. (2017). ‘Named Small but Doing Great’: An Investigation of Small-Scale Chemistry Experimentation for Effective Undergraduate Practical Work. International Journal of Science and Mathematics Education, 15(3), 393–410. https://doi.org/10.1007/s10763-015-9700-z
Toma, H. E. (2021). Microscale Educational Kits for Learning Chemistry at Home. Journal of Chemical Education, 98(12), 3841–3851. https://doi.org/10.1021/acs.jchemed.1c00637
Vangunten, M. T., Walker, U. J., Do, H. G., & Knust, K. N. (2020). 3D-Printed Microfluidics for Hands-On Undergraduate Laboratory Experiments. Journal of Chemical Education, 97(1), 178–183. https://doi.org/10.1021/acs.jchemed.9b00620
Veltri, L. M., & Holland, L. A. (2020). Microfluidics for Personalized Reactions to Demonstrate Stoichiometry. Journal of Chemical Education, 97(4), 1035–1040. https://doi.org/10.1021/acs.jchemed.9b00544
Vié, C., Fattaccioli, J., & Jacq, P. (2019). Introduction to Droplet-Based Millifluidic Chemistry Using a Macroscopic-Droplet Generator. Journal of Chemical Education, 96(4), 797–800. https://doi.org/10.1021/acs.jchemed.8b00876
Weiss, C. J., & Porter, L. A. (2020). Synthesis and Use of a Nickel Oxidation Catalyst Using Glove Box Methods. Journal of Chemical Education, 97(6), 1655–1659. https://doi.org/10.1021/acs.jchemed.0c00004
Wietsma, J. J., van der Veen, J. T., Buesink, W., van den Berg, A., & Odijk, M. (2018). Lab-on-a-Chip: Frontier Science in the Classroom. Journal of Chemical Education, 95(2), 267–275. https://doi.org/10.1021/acs.jchemed.7b00506
Worley, B., Villa, E. M., Gunn, J. M., & Mattson, B. (2019). Visualizing Dissolution, Ion Mobility, and Precipitation through a Low-Cost, Rapid-Reaction Activity Introducing Microscale Precipitation Chemistry. Journal of Chemical Education, 96(5), 951–954. https://doi.org/10.1021/acs.jchemed.8b00563
Xu, C., Jiang, D., Lin, J., & Cai, L. (2018). Cross Channel Thread-Based Microfluidic Device for Separation of Food Dyes. Journal of Chemical Education, 95(6), 1000–1003. https://doi.org/10.1021/acs.jchemed.7b00784
Xu, C., Yang, Z., & Lum, G. Z. (2021). Small‐scale magnetic actuators with optimal six degrees‐of‐freedom. Advanced Materials. https://doi.org/10.1002/adma.202100170
Xu, X., Li, W., & Duan, Q. (2021). Transfer learning and SE-ResNet152 networks-based for small-scale unbalanced fish species identification. Computers and Electronics in Agriculture.
Zakaria, Z., Latip, J., & Tantayanon, S. (2012). Organic Chemistry Practices for Undergraduates using a Small Lab Kit. Procedia - Social and Behavioral Sciences, 59, 508–514. https://doi.org/10.1016/j.sbspro.2012.09.307