•  
  •  
 

Jurnal Inovasi Pendidikan IPA

Keywords

basic physics textbook prototype, reflective-integrative, problem solving, metacognitive knowledge, validitas, efektivitas, reflektif-integratif, pengetahuan deklaratif, pengetahuan prosedural, pengetahuan kondisional

Document Type

Article

Abstract

Penelitian ini bertujuan menghasilkan prototipe buku ajar fisika dasar reflektif-integratif berbasis problem solving yang valid dan efektif untuk meningkatkan pengetahuan metakognisi peserta didik. Desain penelitian ini adalah eksperimen semu menggunakan one group pretest-posttest design, dengan sampel 25 peserta didik program studi pendidikan fisika FPMIPA IKIP Mataram. Instrumen penelitian ini menggunakan lembar validasi untuk mengukur validitas produk, dan tes berbentuk essay yang mengukur efektivitas produk untuk meningkatkan pengetahuan metakognisi peserta didik. Data dan analisis yang digunakan yaitu: (1) validitas produk dilakukan oleh 2 (dua) ahli yang berkompeten dan dianalisis secara deskriptif, dan (2) efektivitas produk diukur setelah pembelajaran dan dianalisis secara deskriptif menggunakan persamaan n-gain, dan secara statistik dengan paired samples test. Hasil penelitian menunjukkan prototipe buku ajar fisika dasar reflektif-integratif berbasis problem solving valid (3,38) dan reliabel (0,97), sedangkan pengetahuan metakognisi meliputi pengetahuan deklaratif (n-gain = 0,58), pengetahuan prosedural (n-gain = 0,53), dan pengetahuan kondisional (n-gain = 0,56) dinyatakan meningkat setelah pembelajaran dengan kategori sedang. Hasil uji statistik menunjukkan prototipe buku ajar fisika dasar reflektif-integratif berbasis problem solving berpengaruh signifikan (p < 0,05) terhadap pengetahuan metakognisi peserta didik. Dengan demikian, prototipe buku ajar fisika dasar reflektif-integratif berbasis problem solving valid dan efektif untuk meningkatkan pengetahuan metakognisi peserta didik.


Validity and effectiveness of reflective-integrative basic physics textbook prototype based on problem solving to improve metacognition knowledge

Abstract

This study aimed at producing a valid and effective reflective-integrative basic physics textbook prototype based on problem solving in order to improve students' metacognitive knowledge at university level. The design was quasi experiment with one group pretest-posttest design, which involved 25 students of FPMIPA, IKIP Mataram. Instruments of the study were a validation sheet to measure product validity and an essay test to measure effectiveness of the product in attempt to improve students' metacognitive knowledge. Data and its analysis were conducted through: (1) two experts' descriptive judgements on the validity of the text book and (2) descriptive analysis on product effectiveness analyzed after learning session by using n-gain equation and statistical analysis using paired sample test. Results show that the text book prototype was valid (3,38) and reliable (0,97), while metacognitive knowledge that covered declarative knowledge (n-gain= 0,58), procedural knowledge (n-gain= 0,53), and conditional knowledge (n-gain= 0,56) were found improved at medium level after learning conducted. Statistical test result shows that the text book protype had significant effect (p<0,05) towards students' metacognitive knowledge. Therefore, the reflective-integrative basic physics textbook prototype based on problem solving was found valid and effective in improving students' metacognitive knowledge at university level.

First Page

205

Last Page

215

Page Range

205-215

Issue

2

Volume

5

Digital Object Identifier (DOI)

10.21831/jipi.v5i2.27089

Source

https://journal.uny.ac.id/index.php/jipi/article/view/27089

References

Adair, J. (2019). Decision Making and Problem Solving: Break Through Barriers and Banish Uncertainty at Work. Kogan Page Publishers.

Adisendjaja, Y. H. (2008). Analisis buku ajar biologi sma kelas X di Kota Bandung berdasarkan literasi sains. Bandung: Jurusan Pendidikan Biologi Universitas Pendidikan Indonesia.

Adisendjaja, Y. H., & Romlah, O. (2007). Analisis buku ajar sains berdasarkan literasi ilmiah sebagai dasar untuk memilih buku ajar sains (Biologi). Seminar Pendidikan Nasional Di Jurusan Pendidikan Biologi FMIPA, 25–26.

Arends, R. I. (2012). Learning to teach (9th Editio). New York: The McGraw-Hill Companies, Inc. Astuti, Y., & Setiawan, B. (2013). Pengembangan lembar kerja siswa (LKS) berbasis pendekatan inkuiri terbimbing dalam pembelajaran kooperatif pada materi kalor. Jurnal Pendidikan IPA Indonesia, 2(1), 88–92. https://doi.org/10.15294/jpii.v2i1.2515

Asy’ari, M., & Fitriani, H. (2017). Literatur reviu keterampilan proses sains sebagai dasar pengembangan keterampilan berpikir tingkat tinggi. Prisma Sains : Jurnal Pengkajian Ilmu Dan Pembelajaran Matematika Dan IPA IKIP Mataram, 5(1), 1. https://doi.org/10.33394/j-ps.v5i1.1114

Asy’ari, M., Ikhsan, M., & Muhali, M. (2018). Validitas instrumen karakterisasi kemampuan metakognisi mahasiswa calon guru fisika. Prisma Sains : Jurnal Pengkajian Ilmu Dan Pembelajaran Matematika Dan IPA IKIP Mataram, 6(1), 18. https://doi.org/10.33394/j-ps.v6i1.955

Asy’ari, M., Ikhsan, M., & Muhali, M. (2019). The effectiveness of inquiry learning model in improving prospective teachers’ metacognition knowledge and metacognition awareness. International Journal of Instruction, 12(2), 455–470. https://doi.org/10.29333/iji.2019.12229a

Azevedo, R., & Aleven, V. (2013). International handbook of metacognition and learning technologies (R. Azevedo & V. Aleven, Eds.). https://doi.org/10.1007/978-1-44195546-3

Cain, S. E., & Evans, J. M. (1990). Sciencing: An involvement approach to elementary science methods. Prentice Hall. de Backer, L., Van Keer, H., & Valcke, M. (2012). Exploring the potential impact of reciprocal peer tutoring on higher education students’ metacognitive knowledge and regulation. Instructional Science, 40(3), 559–588. https://doi.org/10.1007/s11251-011-91905

Dyer, J., Gregersen, H., & Christensen, C. M. (2011). The innovator’s DNA: Mastering the five skills of disruptive innovation. Harvard Business Review Press.

Facione, P., & Gittens, C. A. (2015). Think critically. Pearson. Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906–911. https://doi.org/10.1037/0003066X.34.10.906

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education. Singapore: McGraw-Hill Humanities/Social Sciences/Languages.

Hacker, D. J., Bol, L., & Keener, M. C. (2008). Metacognition in education: A focus on calibration. Handbook of Metamemory and Memory, 429455.

Hake, R. R. (1999). Analyzing change/Gain scores. Retrieved from http://www.physics.indiana.edu/~sdi/Anal yzingChange-Gain.pdf

Hasanah, U., Gummah, S., & Herayanti, L. (2018). Perbedaan hasil kemampuan berpikir kritis dan berpikir kreatif siswa menggunakan handout berbasis pemecahan masalah. Prisma Sains : Jurnal Pengkajian Ilmu Dan Pembelajaran Matematika Dan IPA IKIP Mataram, 6(1), 38. https://doi.org/10.33394/j-ps.v6i1.953

Kuhn, D., & Dean, Jr., D. (2004). Metacognition: A bridge between cognitive psychology and educational practice. Theory Into Practice, 43(4), 268–273. https://doi.org/10.1207/s15430421tip4304 _4

Lester, F. K., Garofalo, J., & Kroll, D. L. (1989). Self-confidence, interest, beliefs, and metacognition: Key influences on problem-solving behavior. In Affect and Mathematical Problem Solving (pp. 75– 88). https://doi.org/10.1007/978-1-46123614-6_6

Madsen, A., McKagan, S. B., Martinuk, M. S., Bell, A., & Sayre, E. C. (2016). Researchbased assessment affordances and constraints: Perceptions of physics faculty. Physical Review Physics Education Research, 12(1), 010115. https://doi.org/10.1103/PhysRevPhysEduc Res.12.010115

Mbembok, R. L., Fatmawati, A., & Adawiyah, S. R. (2017). Pengaruh model pembelajaran creative problem solving terhadap keterampilan pemecahan masalah dan hasil belajar kognitif siswa. Prisma Sains : Jurnal Pengkajian Ilmu Dan Pembelajaran Matematika Dan IPA IKIP Mataram, 5(1), 25. https://doi.org/10.33394/j-ps.v5i1.1111

Mischel, T. (1971). Piaget: Cognitive conflict and the motivation of thought. Cognitive Development and Epistemology, 311–355.

Muhali, M. (2018). Arah pengembangan pendidikan masa kini menurut perspektif revolusi industri 4.0. Prosiding Seminar Nasional Lembaga Penelitian Dan Pendidikan (LPP) Mandala. Mataram: Mandala Nusra.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

Nieveen, N. (1999). Prototyping to reach product quality. In Design Approaches and Tools in Education and Training (pp. 125–135). https://doi.org/10.1007/978-94-011-42557_10

Nitko, A. J., & Brookhart, S. M. (2011). Educational assessment of students. New Jersey: Pearson/Allyn & Bacon.

Pressley, M., & Harris, K. R. (2009). Cognitive strategies instruction: From basic research to classroom instruction. Journal of Education, 189(1–2), 77–94. https://doi.org/10.1177/002205740918900 1-206

Puspita, L. (2019). Pengembangan modul berbasis keterampilan proses sains sebagai bahan ajar dalam pembelajaran biologi. Jurnal Inovasi Pendidikan IPA, 5(1), 79– 88. https://doi.org/10.21831/jipi.v5i1.22530

Ratumanan, G. T., & Laurens, T. (2006). Evaluasi hasil yang relevan dengan memecahkan problematika belajar dan mengajar. Bandung: CV Afabeta.

Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36(1–2), 111–139. https://doi.org/10.1007/s11165-005-39178

Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351–371. https://doi.org/10.1007/BF02212307

Schraw, G., Olafson, L., Weibel, M., & Sewing, D. (2012). Metacognitive knowledge and field-based science learning in an outdoor environmental education program. In A. Zohar & Y. J. Dori (Eds.), Metacognition in Science Education. Contemporary Trends and Issues in Science Education (pp. 57–77). https://doi.org/10.1007/97894-007-2132-6_4

Setyowati, A., Subali, B., & Mosik, M. (2011). Implementasi pendekatan konflik kognitif dalam pembelajaran fisika untuk menumbuhkan kemampuan berpikir kritis siswa SMP kelas VIII. Jurnal Pendidikan Fisika Indonesia, 7(2). https://doi.org/10.15294/jpfi.v7i2.1078

Sugiharto, B., Corebima, A. D., & Susilo, H. (2018). A comparison of types of knowledge of cognition of preservice biology teachers. Asia-Pacific Forum on Science Learning & Teaching, 19(1), 1– 16.

Sukaisih, R., & Muhali, M. (2014). Meningkatkan kesadaran metakognitif dan hasil belajar siswa melalui penerapan pembelajaran problem solving. Prisma Sains : Jurnal Pengkajian Ilmu Dan Pembelajaran Matematika Dan IPA IKIP Mataram, 2(1), 71. https://doi.org/10.33394/j-ps.v2i1.803

Sutarto, S., & Indrawati, I. (2010). Diktat media pembelajaran. Jember.

Suyono, S., & Hariyanto, H. (2011). Belajar dan pembelajaran: Teori dan konsep dasar. Bandung: PT Remaja Rosdakarya. Taqiyyah, S. A.,

Subali, B., & Handayani, L. (2017). Implementasi bahan ajar sains berbahasa Inggris berbasis metakognitif untuk meningkatkan kemampuan pemecahan masalah siswa SMP. Jurnal Inovasi Pendidikan IPA, 3(2), 224. https://doi.org/10.21831/jipi.v3i2.14859

Thomas, G. P. (2012). Metacognition in science education: Past, present and future considerations. In Second International Handbook of Science Education (pp. 131– 144). https://doi.org/10.1007/978-1-40209041-7_11

Tivani, I., & Paidi, P. (2016). Pengembangan LKS biologi berbasis masalah untuk meningkatkan kemampuan pemecahan masalah dan karakter peduli lingkungan. Jurnal Inovasi Pendidikan IPA, 2(1), 35. https://doi.org/10.21831/jipi.v2i1.8804

Veenman, M. V. J. (2012). Metacognition in science education: Definitions, constituents, and their intricate relation with cognition. In Metacognition in Science Education. Contemporary Trends and Issues in Science Education (pp. 21– 36). https://doi.org/10.1007/978-94-0072132-6_2

Wen, Y.-H. (2012). A study on metacognition of college teachers. The Journal of Human Resource and Adult Learning, 8(1), 80. Westwood, P. S. (2008). What teachers need to know about teaching methods. Victoria: ACER Press.

Yimer, A., & Ellerton, N. F. (2010). A five-phase model for mathematical problem solving: Identifying synergies in pre-serviceteachers’ metacognitive and cognitive actions. ZDM, 42(2), 245–261. https://doi.org/10.1007/s11858-009-02233

Yuanita, L., & Ibrahim, M. (2018). Pengembangan model pembelajaran reflektif-metakognitif untuk meningkatkan kemampuan metakognisi siswa SMA (Universitas Negeri Surabaya). https://doi.org/10.13140/RG.2.2.14759.19 361

Yuliati, D. I., Yulianti, D., & Khanafiyah, S. (2011). Pembelajaran fisika berbasis hands on activities untuk menumbuhkan kemampuan berpikir kritis dan meningkatkan hasil belajar siswa SMP. Jurnal Pendidikan Fisika Indonesia, 7(1). https://doi.org/10.15294/jpfi.v7i1.1064

Zohar, A., & Dori, Y. J. (2011). Metacognition in science education: Trends in current research (Vol. 40). Springer Science & Business Media.

Share

COinS