•  
  •  
 

Jurnal Inovasi Pendidikan IPA

Keywords

DLMRs Model, Science Process Skills, Critical Thinking Skills

Document Type

Article

Abstract

This study aims to reveal: (1) the feasibility of the developed Discovery Learning using Multiple Representations (DLMRs) model on the subject matter "Substance Pressure and its Application in Daily Life" for grade 8 students of SMP, (2) the practicality of the developed DLMRs model for science teachers and grade 8 students of SMP, and (3) the effectiveness of the developed DLMRs model in improving the science process and critical thinking skills of grade 8 students of SMP. This research is research and development adapting the development procedures by Borg & Gall which consisted of 10 steps: (1) research and information collection, (2) planning, (3) developing the preliminary form of product, (4) preliminary field testing, (5) main product revision, (6) main field testing, (7) operational product revision, (8) operational field testing, (9) final product revision, and (10) dissemination and implementation. The limited trial subjects consist of 15 students of class VIII.4 SMPN 1 Watopute. The subjects of the field trial in the experimental class consist of 31 students of class VIII.1 and those in the control class consist of 32 students of class VIII.3 SMPN 1 Watopute. The used sampling technique is cluster sampling. The instrument of data collection is an essay test to measure critical thinking skills, observation sheets to measure science process skills, questionnaires to determine the readability of the DLMRs student worksheet, and questionnaires to determine student and teacher responses to DLMRs model. The data analysis technique used is the MANOVA test with a significance level of 0.05. The results showed that: (1) the developed DLMRs model was feasible to implement based on experts judgment, (2) the DLMRs model is practical for teaching science based on responses given by teachers and students, (3) the DLMRs model is effective for improving students' science process skills, (4) the DLMRs model is effective for enhancing students' critical thinking skills.

First Page

180

Last Page

194

Page Range

180-194

Issue

2

Volume

5

Digital Object Identifier (DOI)

10.21831/jipi.v5i2.26704

Source

https://journal.uny.ac.id/index.php/jipi/article/view/26704

References

Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2-3), 131-152. https://doi.org/10.1016/S0360-1315(99)00029-9

Ainsworth, S. E., Bibby, P. A., & Wood, D. J. (1997). Information technology and multiple representations: new opportunities - new problems. Journal of Information Technology for Teacher Education, 6(1), 93-105. https://doi.org/10.1080/14759399700200006

Budiningsih, A. (2005). Belajar dan pembelajaran. Jakarta: Rineka Cipta.

Crain, W. (2015). Theories of development: Concepts and applications. Psychology Press.

Fredlund, T., Airey, J., & Linder, C. (2015). Enhancing the possibilities for learning: variation of disciplinary-relevant aspects in physics representations. European Journal of Physics, 36(5), 55001. https://doi.org/10.1088/0143-0807/36/5/055001

Gall, M. D., Gall, J. P., & Borg, W. R. (2007). An introduction to educational design research. East. Retrieved from www.slo.nl/organisatie/international/publications

Gilbert, J. K., & Treagust, D. (2009). Multiple representations in chemical education (Vol. 4). Springer.

Goldston, M. J., & Downey, L. (2013). Your science classroom: Becoming an elementary/middle school science teacher. SAGE Publications.

Hamid, A. A. (2011). Pembelajaran fisika di sekolah: Apa dan bagaimana pendekatan generik dan metode iqra dilaksanakan dalam pembelajaran fisika. Yogyakarta.

Hosnan, M., & Sikumbang, R. (2014). Pendekatan saintifik dan kontekstual dalam pembelajaran abad 21: Kunci sukses implementasi kurikulum 2013. Bogor: Ghalia Indonesia.

Joyce, B. R., Weil, M., & Calhoun, E. (2014). Models of teaching. London: Pearson Education Inc.

Kohl, P. B., Rosengrant, D., & Finkelstein, N. D. (2007). Strongly and weakly directed approaches to teaching multiple representation use in physics. Physical Review Special Topics - Physics Education Research, 3(1), 010108. https://doi.org/10.1103/PhysRevSTPER.3.010108

Leigh, G. (2004). Developing multi-representational problem solving skills in large, mixed-ability physics classes. University of Cape Town. Retrieved from https://open.uct.ac.za/handle/11427/6533

Menteri Pendidikan dan Kebudayaan Republik Indonesia. Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor 81A tahun 2013 tentang implementasi kurikulum, Pub. L. No. 81A (2013). Indonesia.

Namdar, B., & Shen, J. (2018). Knowledge organization through multiple representations in a computer-supported collaborative learning environment. Interactive Learning Environments, 26(5), 638-653. https://doi.org/10.1080/10494820.2017.1376337

National Science Teachers Association. (2003). Standards for science teacher preparation. Lincoln. Retrieved from http://digitalcommons.unl.edu/teachlearnfacpub

OECD. (2014). PISA 2015 Results: What students know and can do-student performance in mathematics. Organisation for Economic Co-operation and Development.

Pierce, R., Stacey, K., Wander, R., & Ball, L. (2011). The design of lessons using mathematics analysis software to support multiple representations in secondary school mathematics. Technology, Pedagogy and Education, 20(1), 95-112. https://doi.org/10.1080/1475939X.2010.534869

Pratiwi, F. A., & Rasmawan, R. (2014). Pengaruh penggunaan model discovery learning dengan pendekatan saintifik terhadap keterampilan berpikir kritis siswa SMA. Jurnal Pendidikan Dan Pembelajaran, 3(7). Retrieved from http://jurnal.untan.ac.id/index.php/jpdpb/article/view/6488

Provasnik, S., Malley, L., Stephens, M., Landeros, K., Perkins, R., & Tang, J. H. (2016). Highlights from TIMSS and TIMSS advanced 2015: Mathematics and science achievement of US students in grades 4 and 8 and in advanced courses at the end of high school in an international context (NCES 2017-002). US Department of Education. Washington, DC.: National Center for Education Statistics.

Sprianus, L. A., Sutopo, S., & Parno, P. (2016). Strategi pembelajaran multi representasi untuk meningkatkan konsep kinematika mahasiswa semester awal. In Prosiding Semnas Pendidikan IPA Pascasarjana, Universitas Negeri Malang. Malang: Universitas Negeri Malang.

Treagust, D. F., Duit, R., & Fischer, H. E. (2017). Multiple representations in physics education (Vol. 10). Springer.

Trianto, T. (2010). Model pembelajaran terpadu: Konsep, strategi, dan implementasinya dalam Kurikulum Tingkat Satuan Pendidikan (KTSP). Jakarta: Bumi Aksara. https://doi.org/2010

Waldrip, B., Prain, V., & Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in Science Education, 40(1), 65-80. https://doi.org/10.1007/s11165-009-9157-6

Widoyoko, S. E. P. (2013). Evaluasi program pembelajaran: panduan praktis bagi pendidik dan calon pendidik. Yogyakarta: Pustaka Pelajar. https://doi.org/2013

Yusuf, M., & Wulan, A. R. (2015). Penerapan model pembelajaran discovery learning menggunakan pembelajaran tipe shared dan webbed untuk meningkatkan keterampilan proses sains. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 1(2), 19-26. https://doi.org/10.21009/1.01204

Share

COinS