•  
  •  
 

Keywords

diagnostik, matematika, partial credit model

Document Type

Article

Abstract

Penelitian ini bertujuan untuk menemukan informasi diagnostik dari kesalahan jawaban peserta pada Ujian Nasional (UN) Matematika. Informasi diagnostik yang ditemukan meli-puti atribut yang mendasari butir soal, ketidaktuntasan atribut, dan jenis kesalahan yang dilakukan oleh peserta. Penelitian ini merupakan diagnosis post-hoc, yang digambarkan sebagai pende-katan retrofitting. Analisis butir soal dan respons butir pada UN mata pelajaran matematika untuk menemukan informasi diag-nostik pada kategori isi, proses, dan keterampilan siswa SMP di Bantul Yogyakarta 2007/2008. Hasil penelitian (1) atribut yang mendasari butir soal pada matematika ada 47 atribut, meliputi 4 atribut isi, 36 atribut proses, dan 7 atribut keterampilan, (2) ketidaktuntasan atribut isi, proses, dan keterampilan yang ter-tinggi pada geometri dan pengukuran, (3) jenis kesalahan ter-tinggi pada bilangan, aljabar, dan geometri dan pengukuran adalah kesalahan konsep, dan jenis kesalahan tertinggi pada sta-tistika dan peluang adalah kesalahan interpretasi bahasa, dan (4) penemuan informasi diagnostik data UN Matematika dapat dilakukan melalui mekanisme identifikasi atribut, pengembang-an rubrik penskoran politomus, perhitungan ketidaktuntasan atribut, dan diagnosis kesalahan peserta tes.

Kata kunci: diagnostik, matematika, partial credit model

______________________________________________________________

A DIAGNOSIS OF STUDENTS' MISTAKES BASED ON POLYTOMOUS SCORNG PARTIAL CREDIT MODELS IN MATHEMATICS Abstract This study aims to reveal diagnostic information from the participants' incorrect answers in the National Examination (NE) of Mathematics. The diagnostic information includes the attributes underlying test items, the attribute exhaustiveness, and the types of mistakes that the participants made. This study was a post-hoc diagnostic study, described as the retrofitting approach. The analysis of test items and item responses in the NE of Mathematics aimed to reveal the diagnostic information in the Junior High School students' content, process, and skill categories. The results are that (1) there are 47 attributes underlying the mathematics test items, consisting of 4 content attributes, 36 process attributes, and 7 skill attributes, (2) the highest inexhaustiveness of the content, process, and skill attributes is in the topics of geometry and measurement, (3) most mistakes in the topics of numbers, algebra, geometry, and measurement are those of concepts, and most mistakes in statistics and probability are those of language interpretation, and (4) the findings of diagnostic information in the data on the NE of Mathematics can be revealed through the mechanism of identifying the attributes, developing a polytomous scoring rubric, finding out the attribute inexhaustiveness, and diagnosing mistakes the test participants.

Keywords: diagnosis, mathematics, partial credit model

First Page

308

Last Page

325

Issue

2

Volume

15

Digital Object Identifier (DOI)

10.21831/pep.v15i2.1099

References

Bond, T. G., & Fox, C. M. (2007). Applying the rasch model: fundamental measurement in the human sciences. (2nd Ed.). Mahwah: Lawrence Erlbaum Associates, Publishers.

De Ayala, R. J. (1993). Methods, plainly speaking: An introduction to polytomous item response theory models. Measurement and Evaluation in Counseling and Development, 25, 172-189

DeMars, C. (2010). Item response theory. New York: Oxford University Press, Inc.

Depdiknas. (2006). Peraturan Menteri Pendidikan Nasional Nomor 22, Tahun 2006, tentang Standar Isi untuk Satuan Pendidikan Dasar dan Menengah

Gierl, M. J. (2007a). Making diagnostic inferences about cognitive attributes using the rule-space model and attribute hierarchy method. Journal of Educational Measurement, 44(4), 325-340.

Gierl, M. J. (2007b). Using the attribute hierarchy method to make diagnostic inferences about examinees’ cognitive skills. Makalah disajikan dalam Association of Test Publishers Annual Meeting Palm Springs, CA.

Gierl, M. J., Yinggan Zheng, & Ying Cui. (2008), Using the attribute hierarchy method to identify and interpret cognitive skills that produce group differences. Journal of Educational Measurement, 45 (1), 65-89.

Hessen, D. J. (Juni, 2009). Applying IRT using R. Makalah disajikan dalam Pelatihan Aplikasi Program R dalam Bidang Psikometri dan Penilaian Pendidikan, di PPs Universitas Negeri Yogyakarta.

Leighton, J. P., & Gierl, M. J. (2007). Defining and evaluating models of cognition used in educational measurement to make inferences about examinees’ thinking processes. Educational Measurement: Issues and Practices, 26,3-16.

Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The attribute hierarchy method for cognitive assessment: A variation on tatsuoka’s rule- space approach. Journal of Educational Measurement, 41 (3), 205-237.

Mardapi, Djemari. (2005). Pengembangan sistem penilaian berbasis kompetensi. Dalam HEPI (Eds) Rekayasa Sistem Penilaian Dalam Rangka Meningkatkan Kualitas Pendidikan (pp.71-85). Yogyakarta: HEPI

Roberts, M. R., & Gierl, M. J. (2010). Developing score reports for cognitive diagnostic assessment. Educational Measurement: Issues and Practice. 29 (3), 25-38.

Samejima, F. (1995). A Cognitive method using latent trait models: competency space approach and its relationship with DiBello and Stout’s unified cognitive-psychometric diagnosis model. Dalam P.D. Nichols, S.F. Chipman & R.L. Breman. Cognitively Diagnostic Assessment (pp. 391-410). New Jersey: Lawrance Erlbaum Associates Publishers.

Tatsuoka, K., Corter, J.E., & Tatsuoka, C. (2004). Patterns of diagnosed mathematical content and process skills in TIMSS-R a cross a sample of 20 countries. American Educational Research Journal, 41(4), 901-926.

Thissen, D., Nelson, L., Rosa, K., et al. (2001). Item response theory for items scored in more than two categories. Dalam D. Thissen & H. Wainer. Test Scoring (pp. 141-184). New Jersey: Lawrence Erlbaum Associates Publishers.

Wells, C. S., Hambleton, R.K., & Urip Purwono. (18-24 Juni 2008). Polytomous response IRT models and applications. Makalah disajikan dalam Pelatihan Asesmen Pendidikan dan Psikologi (Psikometri), di PPs Universitas Negeri Yogyakartarta.

Share

COinS