•  
  •  
 

Document Type

Article

Abstract

This research is aimed at describing (1) the characteristics of items about a diagnostic test of circle material in mathematics, (2) how significant the percentage of students' types of errors in answering the questions, and (3) the diagnosis of students' difficulties in answering the questions based on DINA model. This research is quantitative descriptive research involving eighth graders of junior high school in East Lombok regency as the population. The sample was chosen by a proportionate random sampling technique, consisting of 105 students for preliminary field testing and 416 students for main field testing. The instrument of this study was a diagnostic test using a four-option multiple-choice format. Data on students' responses were analyzed using the R program with CDM (Cognitive Diagnostic Model) DINA model, which requires underlying attributes for each item. The results show that: (1) the diagnostic test instrument had met the qualitative and quantitative content validity; (2) the percentage of students' answers retrieved from the conceptual error is 18.47%, 9.99% is interpretation error, the procedural error is 7.80%, and counting error is 14.57%; (3) based on the results of the analysis with DINA model, students' error in answering the questions of the circle material in mathematics are dominantly caused by students' lack of mastery on solving problems associated to the circumference of a circle, that is, (A28) the ability to calculate the length of a path, and (A29) the ability to calculate many rounds on wheels.

First Page

144

Last Page

155

Issue

2

Volume

23

Digital Object Identifier (DOI)

10.21831/pep.v23i2.16454

References

Abadyo, A., & Bastari, B. (2015). Estimation of ability and item parameters in mathematics testing by using the combination of 3PLM/ GRM and MCM/ GPCM scoring model. REiD (Research and Evaluation in Education), 1(1), 55-72. https://doi.org/10.21831/reid.v1i1.4898

Chen, J., & de la Torre, J. (2014). A procedure for diagnostically modeling extant large-scale assessment data: The case of the programme for international student assessment in reading. Psychology, 5(18), 1967-1978. https://doi.org/10.4236/psych.2014.518200

de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115-130. https://doi.org/10.3102/1076998607309474

Hughes, M. (1986). Children and number: Difficulties in learning mathematics. Oxford: Basil Blackwell.

Isgiyanto, A. (2011). Diagnosis kesalahan siswa berbasis penskoran politomus model partial credit pada matematika. Jurnal Penelitian Dan Evaluasi Pendidikan, 15(2), 308-325. https://doi.org/10.21831/pep.v15i2.1099

Kartowagiran, B. (2013). Optimalisasi evaluasi pembelajaran teknik mesin melalui logic model untuk meningkatkan soft skills lulusan. Retrieved from https://studylibid.com/doc/395347/optimalisasi-evaluasi-pembelajaran-teknik-mesin

Kusaeri, K. (2012). Menggunakan model DINA dalam pengembangan tes diagnostik untuk mendeteksi salah konsepsi. Jurnal Penelitian Dan Evaluasi Pendidikan, 16(1), 281-306. https://doi.org/10.21831/pep.v16i1.1118

Kusaeri, K., Suryanto, S., & Kumaidi, K. (2012). Estimasi parameter item dan latent class dengan model DINA untuk diagnosis kesulitan belajar. Jurnal Ilmu Pendidikan, 18(2), 187-193. https://doi.org/10.17977/jip.v18i2.3620

Mardapi, D. (2012). Pengukuran, penilaian, dan evaluasi pendidikan. Yogyakarta: Nuha Medika.

Mulyadi, M. (2010). Diagnosis kesulitan belajar dan bimbingan terhadap kesulitan belajar khusus. Yogyakarta: Nuha Litera.

Osterlind, S. J. (1998). Constructing test items: Multiple-choice, constructed-response, performance and other formats. Boston, MA: Kluwer Academic Publishers.

Ozaki, K. (2015). DINA models for multiple-choice items with few parameters. Applied Psychological Measurement, 39(6), 431-447. https://doi.org/10.1177/0146621615574693

Ravand, H., & Robitzsch, A. (2015). Cognitive diagnostic modeling using R. Practical Assessment, Research, and Evaluation, 20(1), 1-12. https://doi.org/10.7275/5g6f-ak15

Regulation of Minister of National Education, No. 22 of 2006 on Content Standard. , (2006).

Retnawati, H. (2016). Validitas reliabilitas dan karakteristik butir (Panduan untuk peneliti, mahasiswa, dan psikometrian). Yogyakarta: Nuha Medika.

Retnawati, Heri. (2017). Diagnosing the junior high school students' difficulties in learning mathematics. International Journal on New Trends in Education and Their Implications, 8(1), 33-50. Retrieved from http://www.ijonte.org/FileUpload/ks63207/File/04.heri_retnawati.pdf

Runtukahu, J. T., & Kandou, S. (2014). Pembelajaran matematika dasar bagi anak berkesulitan belajar. Yogyakarta: Ar-Ruzz Media.

Suwarto, S. (2013). Pengembangan tes diagnostik dalam pembelajaran: Panduan praktis bagi pendidik dan calon pendidik. Yogyakarta: Pustaka Pelajar.

Tatsuoka, K. K. (2009). Cognitive assessment: An introduction to the rule space method. New York, NY: Routledge/Taylor & Francis.

Triana, A. (2016). Pengembangan tes diagnostik kesulitan belajar matematika siswa SMA kelas XII IPA. Master thesis, Universitas Negeri Yogyakarta, Yogyakarta.

Westwood, P. S. (2000). Numeracy and learning difficulties: Approaches to teaching and assessment. Camberwell, Victoria: Australian Council for Educational Research.

Westwood, P. S. (2008). What teachers need to know about teaching methods. Camberwell, Victoria: Australian Council for Educational Research.

Wulansari, W. (2014). Analisis untuk menemukan informasi kesalahan konsep siswa dalam menyelesaikan soal berdasarkan hasil Ujian Nasional (UN) matematika SD tahun 2012/2013 di Kota Kediri. Master thesis, Universitas Negeri Yogyakarta, Yogyakarta.

Share

COinS