Keywords
Model Simultan ML1P dengan Waktu Respon; Data Simulasi
Document Type
Article
Abstract
Penelitian ini bertujuan untuk menganalisis model simultan model logistik satu parameter (ML1P) dengan waktu respon. Analisis terhadap model menggunakan data simulasi, yang skenario pembangkitan data simulasi dilakukan berdasarkan banyaknya peserta tes (500, 1000) dan banyaknya soal tes (11, 20, 40). Setiap skenario direplikasi sebanyak 30 kali. Metode estimasi parameter model menggunakan metode Bayesian, Markov Chain Monte Carlo. Analisis terhadap model dilakukan dengan menghitung selisih antara besaran parameter bangkitan (true value) dengan besaran parameter estimasi. Metode analisis menggunakan Root Mean Square Error (RMSE), Standart Error (SE) dan bias. Hasil penelitian menunjukkan bahwa performance hasil estimasi parameter model yang terdapat dalam soal tes (tingkat kesulitan soal, kelambatan soal, dan besarnya usaha untuk soal ke-j), tidak dipengaruhi oleh banyaknya soal tes. Performancehasil estimasi parameter model dalam peserta tes (kecepatan dan kemampuan peserta tes) dipengaruhi oleh banyaknya soal tes, yang semakin banyak soal tes maka hasil estimasi parameternya akan semakin mendekati nilai parameter yang sebenarnya.
Kata kunci: model simultan ML1P dengan waktu respon, data simulasi, metode analisis
ANALYSIS OF SIMULTANEOUS MODEL OF ONE PARAMETER LOGISTIC MODEL AND RESPONSE TIME BASED ON SIMULATION DATA
Abstract
The aim of this research is to analyse simultaneous model One Parameter Logistic Model (1-PLM) and respon time. The analysis of model used the simulation data, where the data generation scenario was done based on the number of test takers (500, 1000) and the number of test items (11, 20, 40). Parameter estimation method used the Bayesian method, Markov Chain Monte Carlo. The analysis of model was done with the accounting of the distance of true value and estimated parameter. The Analysis methods use Root Mean Square Error (RMSE), Standart Error (SE) and bias.The result of research reveals the performance of parameter estimation result for the test item (the test item difficulty, test item slowness, and the effort to complete the item test) is not influenced by the number of the test items. However, the performance of parameter estimation result for the test takers (the speed and ability of the test takers) is influenced by the number of the test items. The more test items there are, the closer is the parameter estimation result to the true parameter. Keywords: simultaneous model one parameter logistic model (1-PLM) and respon time, simulation data, analysis methods
First Page
208
Last Page
220
Issue
2
Volume
20
Digital Object Identifier (DOI)
10.21831/pep.v20i2.8068
Recommended Citation
Hidayah, Noer and Kumaidi, Kumaidi
(2016)
"Analisis model simultan model logistik satu parameter dengan waktu respon berdasarkan data simulasi,"
Jurnal Penelitian dan Evaluasi Pendidikan: Vol. 20:
Iss.
2, Article 7.
DOI: 10.21831/pep.v20i2.8068
Available at:
https://scholarhub.uny.ac.id/jpep/vol20/iss2/7
References
Abdelfattah, F. A. (2007). Response latency fffects on classical and item response theory parameters using different scoring procedures. Disertasi tidak dipublikasikan. Ohio University.
Bolt, D. M., Cohen, A. S., & Wollack, J. A. (2002). Item Parameter Estimation Under Conditions of Test Speededness: Application of a Mixture Rasch Model With Ordinal Constraints. Journal of Educational Measurement, 39(4), 331-348. https://doi.org/10.1111/j.1745-3984.2002.tb01146.x
Entink, R. H. K. (2009). Statistical Models for Response and Response Time. Thesis, tidak dipublikasikan. University of Twente, Enchede.
Entink, R. H. K., van der Linden, W. J., & Fox, J.-P. (2009). A Box-Cox normal model for response times. The British Journal of Mathematical and Statistical Psychology, 62(Pt 3), 621-640. https://doi.org/10.1348/000711008X374126
Gvozdenko, E., & Chambers, D. (2007). Beyond test accuracy: Benefits of measuring response time in computerised testing. Australasian Journal Of Educational Technology, 23(4), 542-558. Retrieved from http://dx.doi.org/10.14742/ajet.1251
Haryanto. (2013). Pengembangan computerized adaptive testing (CAT) Dengan algoritma logika fuzzy. Jurnal Penelitian Dan Evaluasi Pendidikan, 15(1), 47-70. Retrieved from http://journal.uny.ac.id/index.php/jpep/article/view/1087/1139
Hidayah, N., Kumaidi, & Kartowagiran, B. (2015). Integrated model of one parameter logistic model and response time model. In Prosiding, International Conference and Workshop on Basic and Applied Sciences. Surabaya: Universitas Airlangga.
Hornke, L. F. (2000). Response times in CAT as an additional means to differential assessment. Psicológica, 21(1), 175-189. Retrieved from https://www.uv.es/psicologica/articulos1y2.00/hornke.pdf
Ingrisone, S. J. (2008). An extended item response theory model incorporating item response time. Disetasi Doktor, tidak dipblikasikan. Florida State University.
Ingrisone II, J. N. (2008). Modeling the joint distribution of response accuracy and response time. Disertasi, tidak dipublikasikan. Florida State University.
Meng, X.-B., Tao, J., & Chang, H.-H. (2015). A Conditional Joint Modeling Approach for Locally Dependent Item Responses and Response Times. Journal of Educational Measurement, 52(1), 1-27. https://doi.org/10.1111/jedm.12060
Meyer, J. P. (2010). A Mixture Rasch Model With Item Response Time Components. Applied Psychological Measurement, 34(7), 521-538. https://doi.org/10.1177/0146621609355451
Meyer, J. P., & Wise, S. L. (2005). Item response timeand distractor analysis including item response time in distractoranalysis via multivariate kernel smooting. Makalah disajikan dalam The meeting of the National Council on Measurement in Education.
Oshima, T. C. (1994). The Effect of Speededness on Parameter Estimation in Item Response Theory. Journal of Educational Measurement, 31(3), 200-219. https://doi.org/10.1111/j.1745-3984.1994.tb00443.x
Pleskac, T. J., & Busemeyer, J. R. (2010). Two-stage dynamic signal detection: A theory of choice, decision time, and confidence. Psychological Review, 117(3), 864-901. Retrieved from http://dx.doi.org/10.1037/a0019737
Schnipke, D. L., & Scrams, D. J. (1999). Exploring issues of examinee behavior: Insights gained from response-time analyses. Law School Admission Council Computerized Testing Report. LSAC Research Report Series.
Schnipke, D. L., & Pashley, P. J. (1997). Assessing Subgroup Differences in Item Response Times. In American Educational Research Association Annual Meeting 1997. Retrieved from https://www.learntechlib.org/p/81203
Thissen, D. (1983). Latent trait scoring of timed ability tests, university of kansas. Retrieved November 25, 2012, from http://www.psych.umn.edu/psylab.
van der Linden, W. J. (2006). A Lognormal Model for Response Times on Test Items. Journal of Educational and Behavioral Statistics , 31(2), 181-204. https://doi.org/10.3102/10769986031002181
van der Linden, W. J. (2007). A Hierarchical Framework for Modeling Speed and Accuracy on Test Items. Psychometrika, 72(3), 287. https://doi.org/10.1007/s11336-006-1478-z
van der Linden, W. J., & Hambleton, R. K. (Eds). (1997). Handbook of modern item response theory. New York: Springer-Verlag.
van der Linden, W. J., & van Krimpen-Stoop, E. M. L. A. (2003). Using response times to detect aberrant responses in computerized adaptive testing. Psychometrika, 68(2), 251-265. https://doi.org/10.1007/BF02294800
Wang, T. (2006). A model for the joint distribution of item response and response time unsing one-parameter weibull distribution. CASMA Research Report 20. Iowa City, IA : Center for Advance Studies in Measurement and Assessment.
Wang, T., & Hanson, B. A. (2005). Development and Calibration of an Item Response Model That Incorporates Response Time. Applied Psychological Measurement , 29(5), 323-339. https://doi.org/10.1177/0146621605275984
Wise, S. L., & DeMars, C. E. (2006). An Application of Item Response Time: The Effort-Moderated IRT Model. Journal of Educational Measurement, 43(1), 19-38. https://doi.org/10.1111/j.1745-3984.2006.00002.x
Wollack, J. A., & Woo, V. (2009). Using response time to improve parameter estimation for speeded test item. Paper in The annual meeting of the National Council on Measurement in Education, San Diego, CA.
Yamamoto, K. (1995). Estimating the effects of test length and test time on parameter estimation using the hybrid model. ETS Tecnical Report TR-10, Princeton, NJ: Educational Testing Service.