Keywords
fuzzy c-means, analisis faktor, unidimensional
Document Type
Article
Abstract
Tulisan ini memperkenalkan metode fuzzy c-means dalam mengklasifikasi konstruk tes. Untuk memverifikasi sifat unidimensional suatu tes biasanya menggunakan analisis faktor sebagai bagian dari statistik parametrik dengan beberapa persyaratan yang ketat sedangkan metode fuzzy c-means termasuk metode heuristik yang tidak memerlukan persyaratan yang ketat. Studi simulasi penelitian ini menggunakan dua metode yakni analisis faktor menggunakan program SPSS dan fuzzy c-means menggunakan program Matlab. Data simulasi menggunakan tipe data dikotomi dan politomi yang dibangkitkan lewat prog-ram Microsoft Office Excel dengan desain 2 kategori, yakni: tiga butir soal dengan banyak peserta tes 10, dan 30 butir soal dengan banyak peserta tes 100. Hasil simulasi menunjukkan bahwa metode fuzzy c-means lebih memberikan gambaran pengelompokan secara deskriptif dan dinamis pada semua desain yang telah dibuat dalam memverifikasi unidimensional pada suatu tes.
Kata kunci: fuzzy c-means, analisis faktor, unidimensional
_____________________________________________________________
SIMULATION STUDY USING FUZZY C-MEANS FOR CLASIFYING TEST CONSTRUCTION
Abstract This paper introduces the fuzzy c-means method for classifying the test constructs. To verify the unidimensional a test typically uses factor analysis as part of parametric statistics with some strict requirements, while fuzzy c-means methods including method heuristic that do not require strict require-ments. Simulation comparison between the method of factor analysis using SPSS program and fuzzy c-means methods using Matlab. Simulation data using data type dichotomy and politomus generated through Microsoft Office Excel programs each with a number of 3 items using the number of participants 10 tests, while the number of 30 test items using the number as many as 100 participants. The simulation results show that the fuzzy c-means method provides a more descriptive and dyna-mic grouping of all the designs that have been made in verifying the unidimensional as a test.
Keywords: fuzzy c-means, factor analysis, unidimensional
First Page
115
Last Page
138
Issue
1
Volume
15
Digital Object Identifier (DOI)
10.21831/pep.v15i1.1090
Recommended Citation
Rukli, Rukli
(2011)
"STUDI SIMULASI MENGGUNAKAN FUZZY C-MEANS DALAM MENGKLASIFIKASI KONSTRUK TES,"
Jurnal Penelitian dan Evaluasi Pendidikan: Vol. 15:
Iss.
1, Article 6.
DOI: 10.21831/pep.v15i1.1090
Available at:
https://scholarhub.uny.ac.id/jpep/vol15/iss1/6
References
Chong Ho Yu, Sharon Osborn Popp, Samuel DiGangi, & Angel Jannasch- Pennell. (2007). Unidimensionality: A comparison of Rasch modeling, parallel analysis, and TETRA practical assessment, Research & EvaluationVolume 12, Number 14. Didownload 15 September 2009 dari http://pareonline.net/pdf/v12n14.pdf
Dunn-Rankin, P., Knezek, G.,A., Wallace, S., & Shugian Zhang. (2004). Scalling methods. Lowrence Erlbaum Associates Publisher, London.
Ghozali, Iman & Fuad. (2008). Structural equation modeling teori, konsep dan aplikasi dengan program liserel 8.80. Badan Penerbit Universitas Diponegoro, Semarang
Hambleton, R. K., Swaminathan, H., & Rogers, H.J. (1991). Fundamentals of item response theory. Newbury Park, CA: Sage.
Ledesma, R., D., and Valero-Mora, P. (2007). Determining the number of factors to retain in EFA: an easy-to-use computer program for carrying out Parallel Analysis. Practical Assessment, Research & Evaluation, Vol 12, No 2. Didownload 5 September 2009 dari http://pareonline.net/pdf/v12n2.pdf
Lelli, S. (2002). Factor Analysis Fuzzy Sets Theory: Assessing the influence of different techniques on sen's functioning approach. Didowload 17 September 2009 dari http://www.econ.kuleuven.be/ew/academic/econover/ Papers/DPS0121.pdf
Moore, A, W. (2001). K-means and hierarchical klaster ing. Didowload 14 September 2009 dari http://www.autonlab.org/ tutorials/kmeans11.pdf.
Santoso, Agus. (2009). Computerized adaptive testing untuk pengkuran hasil belajar mahasiswa universitas terbuka. Disertasi doktor, tidak diterbitkan. Universitas Negeri Yogyakarta, Yogyakarta.
Sen-Chi Yu and Yuan-Horng Lin. (2008). Applications of fuzzy theory on health care: An example of depression disorder classification based on FCM. WSEAS Transactions on Information science and applications. Issue 1, Volume 5, January. Didowload 20 November 2009 dari http://www.wseas.us/e-library/transactions/informa-tion/2008/24134.pdf.
Suncoko, Cipto. (2009). Model konstrak partisipasi orang tua pada program paket B setara SMP di wilayah DIY. Disertasi doktor, tidak diterbitkan. Universitas Negeri Yogyakarta, Yogyakarta.
Susongko, Purwo. (2009). Perbandingan keefektifan bentuk tes uraian dan testlet dengan penerepana graded response model (grm). Disertasi doktor, tidak diterbitkan. Universitas Negeri Yogyakarta, Yogyakarta.
Teknomo, K. (2007). K-Means Klaster ing Tutorial. Didownload 27 Agustus 2009 dari http:people.revoledu.comkarditutorial kMean
Yuan H. Li & Schafer, W., D. (2003). Multidimensional Computerized Adaptive Testing in Recovering Reading and Mathematics Abilities, Paper presented at the annual meeting of the American Educational Research Association, Chicago, IL. Didownload tanggal 12 Agustus 2009 dari http://www.psych.umn.edu/psylabs/catcentral/pdf% 20files/li03- 01.pdf.
Wu, M., & Adams, R. (2006). Modeling mathematics problem solving item response using a multidimensional IRT model, Mathematics Educational Research Jurnal, Vol. 18 No. 2 p. 93-113. Didownload 27 Agustus 2009 dari http://www.merga.net.au/ documents/MERJ_18_2_Wu.pdf
Zimmerman, H. J. 1993. Fuzzy Set Theory and Its Applications. 2nd ed. Boston: Kluwer-Nijhoff.
Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological bulletin, 99, 432-442. Didownload 27 Agustus 2009 dari http://www.eric.ed.gov/ERICDocs/data/ericdocs2sql/content_storage_01/0000019b/80/2e/bc/8f.pdf