Keywords
program CAT, bank soal
Document Type
Article
Abstract
Penelitian ini bertujuan menghasilkan: (1) model sistem inferensi dalam mengambil keputusan untuk memilih butir-butir tes yang tepat bagi siswa, (2) perangkat lunak Computerized Adaptive Testing (CAT) dengan algoritma logika fuzzy dalam mendeskripsikan kemampuan siswa. Penelitian dengan pen-dekatan Research and Development (R & D), terdiri atas dua bagian yaitu: (1) pengembangan program CAT, (2) pengujian program CAT pada siswa SMA Negeri 6 Yogyakarta kelas XII sebagai sampel, pada mata pelajaran Matematika dengan pokok bahasan Notasi sigma, barisan dan deret. Data dikumpulkan melalui observasi, dokumentasi, dan angket dan dianalisis secara deskriptif kuantitatif. Hasil penelitian menunjukkan program CAT: (1) mudah digunakan, tampilan interaktif, memiliki sistem keamanan, mudah diakses, dan mengacu standar kekinian, (2) dapat mengenali tiga macam pengguna saat proses login, (3) memiliki tiga macam basis data, (4) memiliki sembilan menu utama, (5) menggunakan model sistem inferensi algoritma logika fuzzy, (6) model tampilan program CAT, (7) dapat bekerja sesuai dengan fungsi dan jenis pengguna, dan (8) mampu mengelola: (a) bank soal, (b) mengemas butir-butir tes secara otomatis sesuai dengan kemampuan siswa, (c) pilihan jawaban dimunculkan secara acak, dan (d) menyimpan rekaman hasil tes secara individu maupun bersama-sama.
Kata kunci: program CAT, bank soal
______________________________________________________________
DEVELOPING A COMPUTERIZED-ADAPTIVE TESTING WITH FUZZY LOGIC ALGORITHM
Abstract The development of the Computerized-Adaptive Testing (CAT) aimed to investigate: 1) the performance of inference system in making decision to select the appropriate test items for the students, and 2) the performance of CAT program using fuzzy logic algorithm in describing the competence of students. This research and development (R&D) consists of two parts: (1) developing the CAT, (2) tested testing the CAT on mathematics at the topics of Sigma notation, sequence and series. Data were collected through observation, documentation and questionnaire and analyzed using quantitative descriptive technique. The result showed that: (1) the CAT user friendly, interactive, secure, accessible, and current and (2) able to recognize three types of users while logging-in three types of data bases, that nine options on the main menu it is able to work properly according to the function and the type of users, and administrered the bank and organize test items automatically, based on students' competence, randomize the answer in the options, and record the result of the test simultaneously and individually.
Keywords: CAT program
First Page
47
Last Page
70
Issue
1
Volume
15
Digital Object Identifier (DOI)
10.21831/pep.v15i1.1087
Recommended Citation
Haryanto, Haryanto
(2011)
"PENGEMBANGAN COMPUTERIZED ADAPTIVE TESTING (CAT) DENGAN ALGORITMA LOGIKA FUZZY,"
Jurnal Penelitian dan Evaluasi Pendidikan: Vol. 15:
Iss.
1, Article 3.
DOI: 10.21831/pep.v15i1.1087
Available at:
https://scholarhub.uny.ac.id/jpep/vol15/iss1/3
References
Baeck, T., Fogel, D.B., & Michalewicz, Z. (1997). Handbook on evolutionary computation. New York: IOP Press.
Baumgartner, T.A., & Jackson, A.S. (1995). Measurement for evaluation in physical education and exercise science (5th ed.). New York: WCB Brown & Benchmark Publishers.
Bostock, S.J. (1997). Designing web-based instruction for active learning. Englewood Cliffs: Educational Technology Publications.
Borg, W.R., & Gall, M.D. (1983). Educational research: An introduction (4th ed.). New York: Longman Inc.
Brennan, R.L, (2006). Educational measurement (4th ed.). New York: American Council on Education.
Chee, T.S., & Wong, A.F.L. (2003). Teaching and learning with technology”. Singapore: Prentice Hall.
Echols, J.M., & Shadily, H. (1986). Kamus Inggris Indonesia. Jakarta: PT. Gramedia.
Eiben, A.E., & Michalewicz, Z. (1999). Evolutionary computation. New York: IOP Press.
Goldberg, D.E. (1989). Genetic algorithms in search: Optimization & machine learning. New York: Addison-Wesley.
Hambleton, R.K., Swaminathan, H., & Rogers, H. (1991). Fundamentals of item response theory. New Delhi: Sage Pub. Inc.
Hornby, AS. (1984). Oxford advanced learner’s dictionary of current English. London: Oxford University Press.
Lin, R.L. (1989). Educational measurement (3rd ed.). New York: American Council on Education, Macmillan Publishing Company.
Lord, F.M. (1980). Applications of item response theory to practical testing problems. Englewood Cliffs: Lawrence Erlbaum Associates, Publishers.
Luger, G.F. (2005). Artificial intelligence, structure and strategies for complex problem solving (5th ed). New York: Addison Wesley.
Mardapi, D. (2008). Teknik penyusunan instrumen tes dan non-tes. Yogyakarta: Mitra Cendekia Press.
Masters, G.G., & Keeves, J.P. (1999). Advances in measurement in educational research and assessment. New York: Pergamon Press.
Mitchell, T.M. (1997). Machine learning. New York: McGraw-Hill Companies, Inc.
Nilsson, N.J. (1980). Principles of artificial intelligence. NewYork: Tioga Publishing Company.
Pressman, R.S. (1997). Software engineering: A practitioner’s approach. New York: Mc Graw hill Book, Inc.
Program Pascasarjana. (2008). Pedoman tesis dan disertasi Program Pascasarjana Universitas Negeri Yogyakarta. Yogyakarta: Program Pascasarjana.
Rolston, D.W. (1988). Principles of artificial intelligence and expert systems development. Singapore: McGraw Hill Book, Co.
Terano, T., Asai, K., & Sugeno, M. (1992). Fuzzy systems theory and its applications. New York: Academic Press, Inc.
Tim Prima Pena (2007). Kamus besar bahasa Indonesia. Jakarta: Gita Media Press.
Towndrow, P.A., & Vallence, M. (2004). Using IT in the language classroom: A guide for teachers and students in Asia (3rd ed.). Singapore: Longman Pearson Education South Asia Pte. Ltd.
Van der Linden, W.J., & Hambleton, R.K. (1997). Handbook of modern item response theory. New York: Springer Verlag.
Wang, L.X. (1994). Adaptive fuzzy systems and control: Design and stability analysis. Englewood Cliffs: Prentice Hall Inc.
Widrow, B., & Stearns, S.D. (1985). Adaptive signal processing. Englewood Cliffs: Prentice Hall Inc.
Yan J., Ryan M., & Power J. (1994). Using fuzzy logic. Englewood Cliffs: Prentice Hall Inc.
Zimmermann, H.J. (1991). Fuzzy set theory: And its applications (2nd ed.). London: Kluwer Academic Publishing.