•  
  •  
 

PYTHAGORAS : Jurnal Matematika dan Pendidikan Matematika

Keywords

SIR model, cholera, vaccination, optimal control

Document Type

Article

Abstract

The bacterium Vibrio cholerae is the cause of cholera. Cholera is spread through the feces of an infected individual in a population. From a mathematical point of view, this problem can be brought into a mathematical model in the form of Susceptible-Infected-Recovered (SIR), which considers the birth rate. Because outbreaks that occur easily spread if not treated immediately, it is necessary to control the susceptible individual population by vaccination. The vaccine used is Oral Vibrio cholera. For this reason, the purposes of this study were to establish a model for the spread of cholera without vaccination, analyze the stability of the model around the equili­brium point, form a model for the spread of cholera with vaccination control, and describe the simulation results of numerical model completion. Based on the analysis of the stability of the equilibrium point of the model, it indicates that if the contact rate is smaller than the sum of the birth rate and the recovery rate, cholera will disappear over time. If the contact rate is grea­ter than the sum of the birth rate and the recovery rate, then cholera is still present, or in other words, the disease can still spread. Because the spread is endemic, optimal control of the popu­lation of susceptible individuals is needed, in this case, control by vaccination, so that the popu­lation of susceptible individuals becomes minimum and the population of recovered indivi­duals increases.

Page Range

70 - 83

Issue

1

Volume

16

Digital Object Identifier (DOI)

10.21831/pg.v16i1.35729

Source

https://journal.uny.ac.id/index.php/pythagoras/article/view/35729

References

Ali, M., Nelson, A. R., Lopez, A. L., & Sack, D. A. (2015). Updated global burden of cholera in endemic countries. PLoS Neglected Tropical Diseases, 9(6), 1-13. https://doi.org/10.1371/journal.pntd.0003832

Andam, E. A., Obiri-Apraku, L., Agyei, W., & Obeng-Denteh, W. (2015). Modeling cholera dynamics with a control strategy in Ghana. British Journal of Research, 2(1), 30-41. https://www.imedpub.com/articles/modeling-cholera-dynamics-with-a-control-strategy-in-ghana.php?aid=10010

Ayoade, A. A., Ibrahim, M. O., Peter, O. J., & Oguntolu, F. A. (2018). On the global stability of cholera model with prevention and control. Malaysian Journal of Computing, 3(1), 28-36. https://doi.org/10.24191/mjoc.v3i1.4812

Azman, A. S., Rudolph, K. E., Cummings, D. A. T., & Lessler, J. (2013). The incubation period of cholera: A systematic review. Journal of Infection, 66(5), 432-438. https://doi.org/10.1016/j.jinf.2012.11.013

Bakare, E. A., & Hoskova-Mayerova, S. (2021). Optimal control analysis of cholera dynamics in the presence of asymptotic transmission. Axioms, 10(2), 1-24. https://doi.org/10.3390/axioms10020060

Cabral, J. P. S. (2010). Water microbiology. Bacterial pathogens and water. International Journal of Environmental Research and Public Health, 7(10), 3657-3703. https://doi.org/10.3390/ijerph7103657

CDC. (2018). Cholera - Vibrio cholerae infection. Centers for Disease Control and Prevention. https://www.cdc.gov/cholera/vaccines.html

Chiang, C. L. (1979). Life table and mortality analysis. World Health Organization. https://apps.who.int/iris/handle/10665/62916

Edward, S., & Nyerere, N. (2015). A mathematical model for the dynamics of cholera with control measures. Applied and Computational Mathematics, 4(2), 53-63. https://doi.org/10.11648/j.acm.20150402.14

Emvudu, Y., & Kokomo, E. (2012). Stability analysis of cholera epidemic model of a closed population. Journal of Applied Mathematics & Bioinformatics, 2(1), 69-97. http://www.scienpress.com/Upload/JAMB/Vol%202_1_7.pdf

Feng, S., Feng, Z., Ling, C., Chang, C., & Feng, Z. (2021). Prediction of the COVID-19 epidemic trends based on SEIR and AI models. PLoS ONE, 16(1), 1-15. https://doi.org/10.1371/journal.pone.0245101

Finkelstein, R. A. (1996). Cholera, vibrio cholerae O1 and O139, and other pathogenic vibrios. In S. Baron (Ed.), Medical microbiology (4th ed.). University of Texas Medical Branch at Galveston. https://www.ncbi.nlm.nih.gov/books/NBK8407/

Hendrix, T. R. (1984). Effect of cholera enterotoxin on intestinal permeability. In T. Z. Csaky (Ed.), Pharmacology of intestinal permeation II (pp. 391-400). Springer. https://doi.org/10.1007/978-3-642-69508-7_9

Hntsa, K. H., & Kahsay, B. N. (2020). Analysis of cholera epidemic controlling using mathematical modeling. International Journal of Mathematics and Mathematical Sciences, 2020(1), 1-13. https://doi.org/https://doi.org/10.1155/2020/7369204

Liao, S., & Wang, J. (2011). Stability analysis and application of a mathematical cholera model. Mathematical Biosciences and Engineering, 8(3), 733-752. https://doi.org/10.3934/mbe.2011.8.733

Mahmudah, D. E., Suryanto, A., & Trisilowati, T. (2013). Optimal control of a vector-host epidemic model with direct transmission. Applied Mathematical Sciences, 7(99), 4919-4927. http://doi.org/10.12988/ams.2013.37415

Mukandavire, Z., Smith, D. L., & Morris Jr, J. G. (2013). Cholera in Haiti: Reproductive numbers and vaccination coverage estimation. Scientific Reports, 3, 997. https://doi.org/10.1038/srep00997

Niu, W., & Wang, D. (2008). Algebraic approaches to stability analysis of biological systems. Mathematics in Computer Science, 1(3), 507-539. https://doi.org/10.1007/s11786-007-0039-x

Njagarah, J. B. H., & Nyabadza, F. (2015). Modelling optimal control of cholera in communities linked by migration. Computational and Mathematical Methods in Medicine, 2015(1), 1-12. https://doi.org/10.1155/2015/898264

Olsder, G. J., & van der Woude, J. W. (2005). Mathematical system theory (3rd ed.). VSSD.

Panja, P. (2019). Optimal control analysis of a cholera epidemic model. Biophysical Reviews and Letters, 14(1), 27-48. https://doi.org/10.1142/S1793048019500024

Rodrigues, H. S. (2016). Application of SIR epidemiological model: New trends. International Journal of Applied Mathematics and Informatics, 10(1), 92-97. https://www.naun.org/main/UPress/ami/2016/a262013-075.pdf

Sari, E. R. (2012). Kestabilan global bebas penyakit flu Singapura (hand, foot and mouth disease) berdasarkan model SEIRS [Global stability of free from the Singapore flu (hand, foot and mouth disease) based on SEIRS model]. Pythagoras: Jurnal Pendidikan Matematika, 7(1), 23-32. https://doi.org/10.21831/pg.v7i1.2833

Sari, E. R., Insani, N., & Lestari, D. (2017). The preventive control of a dengue disease using Pontryagin minimum principal. Journal of Physics: Conference Series, 855(1), 1-10. https://doi.org/10.1088/1742-6596/855/1/012045

Tian, J. P., Liao, S., & Wang, J. (2010). Dynamical analysis and control strategies in modeling cholera. A monograph, 1-21. https://web.nmsu.edu/~jtian/PB/2013-2.pdf

Tian, J. P., Liao, S., & Wang, J. (2013). Analyzing the infection dynamics and control strategies of cholera. Discrete and Continuous Dynamical Systems, 747-757. https://doi.org/10.3934/proc.2013.2013.747

van den Driessche, P. (2017). Reproduction numbers of infectious disease models. Infectious Disease Modelling, 2(3), 288-303. https://doi.org/10.1016/j.idm.2017.06.002

Wang, X., & Wang, J. (2015). Analysis of cholera epidemics with bacterial growth and spatial movement. Journal of Biological Dynamics, 9(1), 233-261. https://doi.org/10.1080/17513758.2014.974696

Woodward, M. (2013). Epidemiology: Study design and data analysis (3rd ed.). CRC Press.

World Bank. (1994). Better health in Africa: Experience and lessons learned. Author. https://doi.org/10.1596/0-8213-2817-4

World Health Organization (WHO). (2012). WHO consultation on oral cholera vaccine (OCV) stockpile strategic framework: Potential objectives and possible policy options. Initiative for Vaccine Research (IVR) of the Department of Immunization, Vaccines and Biologicals, World Health Organization. https://apps.who.int/iris/handle/10665/70862

World Health Organization (WHO). (2017). Ending cholera: A global roadmap to 2030. https://www.who.int/cholera/publications/global-roadmap.pdf

World Health Organization (WHO). (2019). Cholera. https://www.who.int/news-room/fact-sheets/detail/cholera

World Health Organization Africa Office Regional. (2021). Weekly bulletin on outbreaks and other emergencies. https://apps.who.int/iris/bitstream/handle/10665/338891/OEW04-1824012021.pdf

Zaman, G., Kang, Y. H., & Jung, I. H. (2008). Stability analysis and optimal vaccination of an SIR epidemic model. Biosystems, 93(3), 240-249. https://doi.org/10.1016/j.biosystems.2008.05.004

Included in

Mathematics Commons

Share

COinS