•  
  •  
 

Keywords

Rigorous Mathematical Thinking (RMT), Understanding of mathematical concepts (PKM), Gender, Initial mathematical ability (KAM), Students' mathematics learning styles (GBM).

Document Type

Article

Abstract

Pemahaman Konseptual Matematis (PKM) memiliki peran penting karena dengan kemampuan ini siswa mudah dalam membangun hubungan untuk memahamai ide dan konsep baru. Kemampuan PKM ini dapat ditumbuh-kembangkan melalui pembelajaran di kelas. Untuk mencapai kecakapan tersebut, pembelajaran perlu memperhatikan keberagaman siswa karena pembelajaran yang mengakomodasi keberagaman menjadi lebih efektif, efesien, dan menarik. Keberagam tersebut dapat berupa Gender (G), Kemampuan Awal Matematika (KAM) dan Gaya Belajar Matematis (GBM) siswa. Salah satu pendekatan pembelajaran yang mengakomodir keberagaman ialah pembelajaran pendekatan Rigorous Mathematical Thinking (RMT). Artikel ini bertujuan untuk mengkaji kemampuan PKM siswa SMP yang memperoleh pembelajaran pendekatan RMT ditinjau dari : a). Gender, b). KAM siswa, dan c). GBM siswa. Penelitian ini merupakan penelitian eksperimen pada siswa SMP di salah satu sekolah di Bandung. Salah satu hasil yang penting adalah dengan pembelajaran ini menjadikan siswa dengan KAM sedang dan rendah dapat mencapai kemampuan yang baik.

The Effect of Rigorous Mathematical Thinking (RMT) Learning Approach On Students' Understanding of Mathematical Concepts

Abstract

An understanding of mathematical concepts (PKM) has an important role because with this ability students are easy in building relationships to understand new ideas and concepts. The ability of PKM can be grown-developed through learning in the classroom. To achieve these skills, learning needs to pay attention to the diversity of students because learning that accommodates diversity becomes more effective, efficient, and engaging. Such diversity can be Gender (G), An initial mathematical ability (KAM) and students' mathematics learning styles (GBM). One approach to learning that accommodates diversity is the Rigorous Mathematical Thinking (RMT) learning approach. This article aims to examine the ability of junior high school students who have learned RMT approach in terms of: a). Gender, b). students' KAM, and c). students' GBM. This research is an experimental research on junior high school students in one school in Bandung. One important result is that this learning engages students with medium and low of KAM able to achieve good abilities.

Page Range

186-199

Issue

2

Volume

4

Digital Object Identifier (DOI)

10.21831/jrpm.v4i2.15385

Source

https://journal.uny.ac.id/index.php/jrpm/article/view/15385

References

Abrams, P. (2013). Learning style inventory for students: Statistical analysis. Retrieved from http://www.thoughtfulclassroom.com/lsis_research_report.pdf

Alifiani, A. (2017). Penerapan model pembelajaran NHT-TGT untuk meningkatkan motivasi dan pemahaman konsep materi matematika SMA. Jurnal Riset Pendidikan Matematika, 4(1), 11. https://doi.org/10.21831/jrpm.v4i1.13100

Arikunto, S. (1999). Dasar-dasar evaluasi pendidikan. Jakarta: Bumi Aksara.

Falik, L. (2007). An interview with Reuven Feuerstein. Journal of Cognitive Education and Psychology, 6(2), 272-280. https://doi.org/10.1891/194589507787382223

Fennema, E. (1996). Mathematics, gender, and research. In Towards Gender Equity in Mathematics Education (pp. 9-26). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47205-8_2

Feuerstein, R. (2000). Mediated learning experience, instrumental enrichment, and the learning propensity assessment device. In ICDL Clinical Practice Guidelines (pp. 557-577). Jerusalem: The Interdisciplinary Council on developmental and Learning Disorders, Bethesda. Retrieved from http://www.educationalsupport.com.au/Site_Data/Documents/mle.pdf

Feuerstein, R. (2017). Conductive education and structural cognitive modifiability.

Fitriyani, H. (2013). Profil berpikir matematis rigor siswa SMP dalam memecahkan masalah matematika ditinjau dari perbedaan kemampuan matematika. AdMathEdu: Jurnal Ilmiah Pendidikan Matematika, Ilmu Matematika Dan Matematika Terapan, 3(1). Retrieved from http://journal.uad.ac.id/index.php/AdMathEdu/article/view/4831

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education. Singapore: McGraw-Hill Humanities/Social Sciences/Languages.

Golden, G. (2010). Mathematical learning inventory. Retrieved December 19, 2017, from http://mathhombre.blogspot.co.id/2010/10/mathematical-learning-inventory.html

Guiso, L., Monte, F., Sapienza, P., & Zingales, L. (2008). Culture, gender, and math. Science, 320(5880), 1164-1165. https://doi.org/10.1126/science.1154094

Hassaskhah, J. (2012). Feuerstein's theory of mediation and its impact on EFL teachers' sense of efficacy. Journal of English Language Teaching Learning, 3(7), 89-113. Retrieved from http://elt.tabrizu.ac.ir/article_621.html

Hudojo, H. (2005). Pengembangan kurikulum dan pembelajaran matematika. Malang: Universitas Negeri Malang.

Isnarto, I., Wahyudin, W., Suryadi, D., & Dahlan, J. A. (2014). Students' proof ability: Exploratory studies of abstract algebra course. International Journal of Education and Research, 2(6), 215-228. Retrieved from http://www.ijern.com/journal/June-2014/18.pdf

Khabib, J., & Manoy, J. T. (2014). Pengembangan perangkat pembelajaran denganpendekatan RMT ditinjau dari fungsi kognitif siswa pada materi melukis segitiga di kelas VII SMP. MATHEdunesa, 3(2). Retrieved from http://jurnalmahasiswa.unesa.ac.id/index.php/mathedunesa/issue/view/709

Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up. Washington, DC: National Academy Press.

Kinard, J., & Kozulin, A. (2008). Rigorous mathematical thinking. Cambridge, MA: Cambridge University Press.

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston. VA: National Council of Teachers of Mathematics.

National Research Council. (2002). Helping children learn mathematics. Washington, D.C.: National Academies Press. https://doi.org/10.17226/10434

OECD. (2010). PISA 2009 results: What students know and can do: Student performance in reading, mathematics and science (volume I). Retrieved from https://www.oecd.org/pisa/pisaproducts/48852548.pdf

Orton, A. (2004). Learning mathematics: Issues, theory, and classroom practice. New York, NY.: Continuum. Retrieved from https://books.google.co.id/books/about/Learning_Mathematics.html?id=Fxp0eSHpS-IC&redir_esc=y

Paas, F., Merrienboer, J. Van, & Gog, T. Van. (2011). Designing instruction for the contemporary learning landscape. In K. R. Harris, S. Graham, & T. Urdan (Eds.), APA Educational Psychology Handbook: Vol. 3. Application to Learning and Teaching (pp. 335-357). Washington D.C.: American Psychological Association. Retrieved from http://ro.uow.edu.au/edupapers/374

Presiden Republik Indonesia. Undang-Undang Republik Indonesia nomor 2 tahun 1989 tentang sistem pendidikan nasional, Pub. L. No. 2, Undang-Undang Republik Indonesia (1989). Retrieved from http://www.dpr.go.id/dokjdih/document/uu/591.pdf

Pritchard, A. (2013). Ways of learning: Learning theories and learning styles in the classroom. New York, NY.: Routledge.

Pujiastuti, H., Kusumah, Y. S., Sumarmo, U., & Dahlan, J. A. (2014). Inquiry co-operation model for enhancing junior high school student's mathematical problem solving ability. International Journal of Contemporary Educational Research, 1(1), 51-60.

Reys, R. E., Lindquist, M. M., Lambdin, D. V., & Smith, N. L. (2014). Helping children learn mathematics. New York, NY.: Wiley.

Samparadja, H., Suryadi, D., & Kartasasmita, B. G. (2014). The Influence of inductive-deductive approach based on modified definition in algebra structure learning toward student's proving ability viewed based on college entrance track. International Journal of Education and Research, 2(7), 239-248. Retrieved from http://www.ijern.com/journal/July-2014/20.pdf

Sari, D. P., Nurochmah, N., Haryadi, H., & Syaiturjim, S. (2016). Meningkatkan kemampuan pemahaman matematis melalui pendekatan pembelajaran student teams achivement division. Jurnal Riset Pendidikan Matematika, 3(1), 16. https://doi.org/10.21831/jrpm.v3i1.7547

Schoenfeld, A. H. (1983). Problem solving in the mathematics curriculum: A report, recommendations, and an annotated bibliography. Washington D.C.: Mathematical Association of America, Committee on the Teaching of Undergraduate Mathematics.

Strong, R., Thomas, E., Perini, M., & Silver, H. (2004). Creating a differentiated mathematics classroom. Improving Achievement in Math and Science, 61(5), 73-78. Retrieved from http://www.ascd.org/publications/educational-leadership/feb04/vol61/num05/Creating-a-Differentiated-Mathematics-Classroom.aspx

Susilo, F. (2004). Matematika humanistik. Yogyakarta: Basis.

Sutawidjaja, A., & Dahlan, J. A. (2011). Model pembelajaran langsung. In A. Sutawidjaja & J. A. Dahlan (Eds.), Pembelajaran Matematika. Jakarta: Universitas Terbuka.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285. https://doi.org/10.1207/s15516709cog1202_4

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 295-312. https://doi.org/10.1016/0959-4752(94)90003-5

Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York, N.Y.: Springer.

Syamsuri, S., Purwanto, P., Subanji, S., & Irawati, S. (2016). Characterization of students formal-proof construction in mathematics learning. Communications in Science and Technology, 1(2), 42-50. https://doi.org/10.21924/cst.1.2.2016.2

Tan, O. S. (2003). Problem-based learning innovation : using problems to power learning in the 21st century. Singapore: Cengage Learning Asia.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Mind in Society The Development of Higher Psychological Processes, Mind in So, 159. https://doi.org/10.1007/978-3-540-92784-6

Zubaidah, A. Y. (2012). Identifikasi kemampuan berpikir matematis rigor siswa sekolah dasar ditinjau dari aspek kemampuan matematika dalam memecahkan masalah matematika pokok bahasan pecahan. UIN Sunan Ampel Surabaya. Retrieved from http://digilib.uinsby.ac.id/9637/

Share

COinS