•  
  •  
 

Keywords

Acceptance; use; UTAUT; IAIN Ponorogo; e-learning

Document Type

Article

Abstract

This study aims to analyze the factors affecting the student's acceptance of e-learning IAIN Ponorogo through the UTAUT model, which consists of four primary constructs: performance expectancy, effort expectancy, social influences, and facilitating conditions. Those constructs are influenced strongly by moderating variables, which include age, gender, experience, and volunteerism of use. This model will be used to analyze the e-learning system of IAIN Ponorogo based on LMS Moodle version 1.9.15 with slight modifications. The research type is quantitative-explanative research. The subjects are students of IAIN Ponorogo, with 400 respondents as a sample from a total population of 8112 students using a stratified random sampling technique. Data was collected from the results of a closed questionnaire and analyzed by the Partial Least Square (PLS) method with WarpPLS software, which consists of three steps: the design of the inner model, the outer model, and the evaluation of the model. The findings indicated that: (1) Facilitating condition factors have a positive and insignificant effect on students' behavior with a parameter coefficient value of 0.7% and a p-value greater than 5%; (2) The interest in use factor has a positive and significant effect on the use behavior of students with a parameter coefficient value of 0.735 and a p-value greater than 5%.

First Page

90

Last Page

102

Page Range

13

Issue

ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Volume

Vol 9, No 1(2024)

Digital Object Identifier (DOI)

10.21831/elinvo.v9i1.67427

References

[1] B. Indrawati, “Tantangan dan Peluang Pendidikan Tinggi Dalam Masa dan Pasca Pandemi Covid-19,” J. Kaji. Ilm., vol. 1, no. 1, pp. 39–48, 2020. [2] P. Donatella, M. Haraldsson, and T. Tagesson, “Reporting on COVID-19 – or not? Annual report disclosure of the pandemic as a subsequent event,” J. Public Budgeting, Account. Financ. Manag., vol. ahead-of-p, no. ahead-of-print, Jan. 2021, doi: 10.1108/JPBAFM-04-2021-0074. [3] B. Tran-Nam, C. Le-Van, and N.-A. Nguyen, “A critical examination of policy objectives and instruments for a sustainable and inclusive post-pandemic recovery,” Fulbright Rev. Econ. Policy, vol. ahead-of-p, no. ahead-of-print, Jan. 2021, doi: 10.1108/FREP-09-2021-0053. [4] O. Troisi, G. Fenza, M. Grimaldi, and F. Loia, “Covid-19 sentiments in smart cities: The role of technology anxiety before and during the pandemic,” Comput. Human Behav., vol. 126, p. 106986, Jan. 2022, doi: 10.1016/J.CHB.2021.106986. [5] J. Moosavi, J. Bakhshi, and I. Martek, “The application of industry 4.0 technologies in pandemic management: Literature review and case study,” Healthc. Anal., vol. 1, p. 100008, Nov. 2021, doi: 10.1016/J.HEALTH.2021.100008. [6] W. He, Z. (Justin) Zhang, and W. Li, “Information technology solutions, challenges, and suggestions for tackling the COVID-19 pandemic,” Int. J. Inf. Manage., vol. 57, p. 102287, Apr. 2021, doi: 10.1016/J.IJINFOMGT.2020.102287. [7] I. Irwanto, “Data on undergraduate students’ self-regulation in online and blended learning environments during the COVID-19 pandemic in Indonesia,” Data Br., vol. 53, p. 110066, 2024, doi: https://doi.org/10.1016/j.dib.2024.110066. [8] M. Çınar, M. Ekici, and Ö. Demir, “A snapshot of the readiness for e-learning among in-service teachers prior to the pandemic-related transition to e-learning in Turkey,” Teach. Teach. Educ., vol. 107, p. 103478, Nov. 2021, doi: 10.1016/J.TATE.2021.103478. [9] M. Gaudin et al., “E-learning versus face-to-face training: Comparison of two learning methods for Lyme borreliosis,” Infect. Dis. Now, Nov. 2021, doi: 10.1016/J.IDNOW.2021.11.001. [10] I. N. Lathifah and I. Wilujeng, “Pengembangan perangkat pembelajaran integrated science berbasis kearifan lokal,” J. Pendidik. Mat. dan Sains, vol. 4, no. 2, pp. 110–119, 2016, doi: 10.21831/jpms.v4i2.12920. [11] L.-L. Ung, J. Labadin, and F. S. Mohamad, “Computational thinking for teachers: Development of a localised E-learning system,” Comput. Educ., vol. 177, p. 104379, Feb. 2022, doi: 10.1016/J.COMPEDU.2021.104379. [12] A. Capatina, N. J. Patel, K. Mitrov, D. S. Cristea, A. Micu, and A.-E. Micu, “Elevating students’ lives through immersive learning experiences in a safe metaverse,” Int. J. Inf. Manage., vol. 75, p. 102723, 2024, doi: https://doi.org/10.1016/j.ijinfomgt.2023.102723. [13] M. Mukhibat and M. Effendi, “Evaluation of E-Learning on Learning Outcome at Universities in Indonesia,” Educ. Adm. Theory Pract., vol. 29, no. 2, 2023. [14] P. R. Wati, N. Khasanah, and I. F. Sari, “Blended learning and students’ engagement,” in UNNES-TEFLIN National Seminar, 2021, vol. 4, no. 1, pp. 100–110. [15] R. Donkin and E. Askew, “An evaluation of formative ‘in-class’ versus ‘e-learning’ activities to benefit student learning outcomes in biomedical sciences,” J. Biomed. Educ., vol. 2017, pp. 1–7, 2017. [16] A. Rohmanu, E. Muafiah, A. Rahman Hakim, and V. V. W. Damayanti, “Kesiapan, Kompleksitas, dan Harapan Pembelajaran Jarak Jauh: Perspektif Mahasiswa Iain Ponorogo,” Kesiapan, Kompleks, dan Harapan Pembelajaran Jarak Jauh Perspekt. Mhs. IAIN PONOROGO, vol. 11, no. 2, pp. 221–241, 2020. [17] Y. Anistyasari and A. I. Nurhidayat, “A Webometric Analysis On State Higher Education Institutions In Indonesia,” in Seminar Nasional Riset Terapan, 2016, vol. 1, pp. A304–A308. [18] S. Hadi, “Studies On the Implied Effectiveness of Online Learning Systems in Iain Ponorogo,” J. Qual. Assur. Islam. Educ., vol. 1, no. 1, pp. 41–50, 2021. [19] R. D. Apriyanto and H. P. Putro, “Tingkat Kegagalan dan Keberhasilan Proyek Sistem Informasi di Indonesia,” in Semin. Nas. Teknol. Inf. dan Komun. 2018 (SENTIKA 2018), 2018, vol. 2018, pp. 23–24. [20] Venkatesh, M. . Morris, G. B. Davis, and F. D. Davis, “User Acceptance of Information Technology: Toward A Unified View,” MIS Quartely, vol. 27, no. 3, pp. 425–478, 2003. [21] M. B. Rivai, “Penerapan Model the Unified Theory of Acceptance and Use of Technology (UTAUT) untuk memahami Tingkat Penerimaan dan Penggunaan E-Learning (Be Smart) di Fakultas Teknik Universitas Negeri Yogyakarta,” Universitas Negeri Yogyakarta, 2014. [22] W. Khoirunnisak, “Implementasi Model Penerimaan Unified Theory Of Acceptance And User Of Technology (UTAUT) Untuk Menganalisis Faktor-Faktor Penerimaan Dosen Terhadap Penggunaan E- Learning Share-ITS,” Institut Teknologi Sepuluh Nopember, 2016. [23] R. V. Margareta, “Analisis Penerimaan Pengguna Sistem SHARE-ITS Menggunakan Model UTAUT Dengan Menambahkan Dua Variabel Moderat (Jurusan Dan Prestasi Akademik),” ITS Surabaya, 2014. [24] S. Sarraf, A. K. Kar, and M. Janssen, “How do system and user characteristics, along with anthropomorphism, impact cognitive absorption of chatbots – Introducing SUCCAST through a mixed methods study,” Decis. Support Syst., vol. 178, p. 114132, 2024, doi: https://doi.org/10.1016/j.dss.2023.114132. [25] B. Harnadi, A. D. Widiantoro, and F. X. H. Prasetya, “Investigating the behavioral differences in the acceptance of MOOCs and E-learning technology,” Comput. Hum. Behav. Reports, p. 100403, 2024, doi: https://doi.org/10.1016/j.chbr.2024.100403. [26] H. Sharif-Nia et al., “E-learning Acceptance: The Mediating Role of Student Computer Competency in the Relationship Between the Instructor and the Educational Content,” Teach. Learn. Nurs., vol. 19, no. 1, pp. e5–e10, 2024, doi: https://doi.org/10.1016/j.teln.2023.08.001. [27] M. Yao-Ping Peng, Y. Xu, and C. Xu, “Enhancing students’ English language learning via M-learning: Integrating technology acceptance model and S-O-R model,” Heliyon, vol. 9, no. 2, p. e13302, 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e13302. [28] Y. J. Kim, J. H. Choi, and G. M. N. Fotso, “Medical professionals’ adoption of AI-based medical devices: UTAUT model with trust mediation,” J. Open Innov. Technol. Mark. Complex., vol. 10, no. 1, p. 100220, 2024, doi: https://doi.org/10.1016/j.joitmc.2024.100220. [29] G. Jethava and U. P. Rao, “Exploring security and trust mechanisms in online social networks: An extensive review,” Comput. Secur., vol. 140, p. 103790, 2024, doi: https://doi.org/10.1016/j.cose.2024.103790. [30] M. D. Williams, N. P. Rana, and Y. K. Dwivedi, “The unified theory of acceptance and use of technology (UTAUT): a literature review,” J. Enterp. Inf. Manag., vol. 28, no. 3, pp. 443–488, 2015. [31] T. Sihvonen, Z.-S. Duma, H. Haario, and S.-P. Reinikainen, “Spectral Profile Partial Least-Squares (SP- PLS): Local multivariate pansharpening on spectral profiles,” ISPRS Open J. Photogramm. Remote Sens., vol. 10, p. 100049, 2023, doi: https://doi.org/10.1016/j.ophoto.2023.100049. [32] K. Bajunaied, N. Hussin, and S. Kamarudin, “Behavioral intention to adopt FinTech services: An extension of unified theory of acceptance and use of technology,” J. Open Innov. Technol. Mark. Complex., vol. 9, no. 1, p. 100010, 2023, doi: https://doi.org/10.1016/j.joitmc.2023.100010. [33] L. Dahlander and D. M. Gann, “How open is innovation?,” Res. Policy, vol. 39, no. 6, pp. 699–709, 2010.

Share

COinS