•  
  •  
 

Keywords

System optimization; web server; database server; moodle; e-learning

Document Type

Article

Abstract

Since COVID-19, online learning has taken on an increasingly prominent role. Moodle is a popular online learning platform. Its implementation necessitates various support components, including a web server and an e-learning database server. The purpose of this study is to examine the optimization of web servers and database servers when there are multiple large connections at SMK N 2 Depok's E-learning. A pre-experimental one-group pretest-posttest design was used to conduct experimental research before and after optimization. Response time and throughput performance variables are used to assess performance on the Web Server, whereas response time and transaction per second performance are measured on the Database Server. The tools utilized in this study were Apache Benchmark and Sysbench. The population in this study was 2180 active users, with a total sample of 338 connections to access e-learning. The results of this research indicate that the performance of the Moodle e-learning web server can be optimized by tuning the web server configuration. There was a significant increase in performance on the web server after optimization. The performance of the moodle e-learning database server performance can be optimized by optimizing the database server configuration tuning. There is a significant increase in the performance of the database server after optimization. To use elearning efficiently when using several connections at the same time, the web server and database server must be optimized through server tuning. This can boost the effectiveness of e-learning in the classroom. As a result, e-learning developers should consider optimizing elearning server settings.

First Page

52

Last Page

63

Page Range

12

Issue

ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Volume

Vol 9, No 1(2024)

Digital Object Identifier (DOI)

10.21831/elinvo.v9i1.42878

References

[1] M. Levidze, “Mapping the research landscape: A bibliometric analysis of e-learning during the COVID- 19 pandemic,” Heliyon, vol. 10, no. 13, p. e33875, Jul. 2024. [2] A. Wibowo, “Kasus Positif COVID-19 Capai 8.607 Orang, Pasien Sembuh Meningkat Jadi 1.042,” BNPB, 2020. [Online]. Available: https://bnpb.go.id/berita/kasus-positif-covid19-capai-8-607-orang- pasien-sembuh-meningkat-jadi-1-042. [3] N. Ngadi, R. Meliana, and Y. A. Purba, “Dampak Pandemi COVID-19 Terhadap PHK dan Pendapatan Pekerja di Indonesia,” J. Kependud. Indones., p. 43, Jul. 2020. [4] Sufiarina and S. Wahyuni, “Force Majeure dan Notoir Feiten Atas Kebijakan PSBB COVID-19,” J. Huk. Sasana, vol. 6, no. 1, pp. 1–15, Jul. 2020. [5] M. P. dan K. RI, Surat Edaran Nomor 4 Tahun 2020 Tentang Pelaksanaan Kebijakan Pendidikan dalam Masa Darurat Penyebaran Corona Virus Diseas (COVID-19). 2020. [6] S. Utami and P. Utami, “Penggunaan Whatsapp Group dan Google Classroom untuk Meningkatkan Partisipasi dan Hasil Belajar Peserta Didik Teknik Audio Video,” Elinvo (Electronics, Informatics, Vocat. Educ., vol. 5, no. 1, pp. 75–88, Sep. 2020. [7] Mesran et al., Merdeka Kreatif di Era Pandemi Covid-19: Suatu Pengantar. Medan: Green Press, 2020. [8] R. Shete and S. Rane, “Prevalence of neck pain in higher secondary students (8th to 12th standard) due to e-learning during the COVID-19 pandemic period: An online survey,” J. Bodyw. Mov. Ther., vol. 40, pp. 16–22, Oct. 2024. [9] Ika, “Membedah Tantangan Pembelajaran Daring di Tengah Pandemi COVID-19,” UGM, 2020. [Online]. Available: https://ugm.ac.id/id/berita/19552-membedah-tantangan-pembelajaran-daring-di- tengah-pandemi-covid-19/. [10] D. Assante, C. Fornaro, L. Laura, D. Pirrone, A. Gokdemir, and V. Jecheva, “Bridging the AI Knowledge Gap with Open Online Education in Europe,” in Smart Technologies for a Sustainable Future, 2024, pp. 363–369. [11] S. D. Maharani and I. N. Hidayah, “Development of E-LKPD based on the team-assisted individualization learning model using Wizer-me on social arithmetics,” in The 3rd International Conference on Mathematics and Its Application, 2024, p. 030013. [12] D. Mihai, M.-E. Mihailescu, M. Carabas, and N. Tapus, “Integrated High-Workload Services for E- Learning,” IEEE Access, vol. 11, pp. 8441–8454, 2023. [13] M. B. Triyono and P. Utami, Pembelajaran e-learning pendidikan vokasi. Yogyakarta: UNY Press, 2017. [14] Moodle, “Statistics,” Moodle, 2024. [Online]. Available: https://stats.moodle.org/. [15] H. D. Surjono, Membangun Course E-learning Berbasis Moodle Edisi Kedua. Yogyakarta: UNY Press, 2013. [16] W. Rice, Moodle 2.0 E-Learning Course Development. Birmingham: Packt Publishing Ltd, 2011. [17] A. Solehudin, R. Mayasari, G. Garno, and A. Susilo Yuda Irawan, “Perbandingan Algoritma Round Robin dan Algoritma Least Connection pada Haproxy untuk Load Balancing Web Server,” SYSTEMATICS, vol. 2, no. 1, p. 21, Apr. 2020. [18] G. Mahajan, D. V. Attar, and S. Kalamkar, “Generation of JMeter scripts for performance testing of Moodle server,” in 2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 2022, pp. 2277–2281. [19] U. H. Jader, S. R. M. Zeebaree, and R. R. Zebari, “A State Of Art Survey For Web Server Performance Measurement And Load Balancing Mechanisms,” Int. J. Sci. Technol. Res., vol. 8, no. 12, pp. 535–543, 2019. [20] P. Manchanda, “Analysis of Optimization Techniques to Improve User Response Time of Web Applications and Their Implementation for MOODLE,” in Advances in Information Technology, 2013, pp. 150–161. [21] W. Ho and S. Park, “Revolutionizing Technical Education in Ethiopia: A Case Study on TVTI’s Open Source eLearning Initiative,” in Learning Technology for Education Challenges, 2024, pp. 179–187. [22] M. Alier, M. J. Casany, A. Llorens, J. Alcober, and J. d’Arc Prat, “Atenea Exams, an IMS LTI Application to Solve Scalability Problems: A Study Case,” Appl. Sci., vol. 11, no. 1, p. 80, Dec. 2020. [23] I. Saraswati, S. Praptodiyono, A. S. Pramudyo, and Kurniawan, “Increasing web server performance using the web balancing method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 673, no. 1, p. 012065, Dec. 2019. [24] A. L. K. Heng, Apache, PHP-FPM & Nginx Reverse Proxy: How to Build a Secure, Fast and Powerful Webserver (Practical Guide Series Book 3). Kindle Edition, 2015. [25] M. Dougiamas and Developers, “Performance recommendations,” Moodle, 2020. [Online]. Available: https://docs.moodle.org/37/en/Performance_recommendations. [26] J. McLaurin, MariaDB Server Performance Tuning & Optimization. Wakefields: MariaDB, 2017. [27] Sugiyono, Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta, 2019. [28] N. Sari, Pengolahan dan Analisis Data Statistika dengan SPSS. Yogyakarta: Deepublish, 2016. [29] I.-T. Publications, “G.1030 : Estimating end-to-end performance in IP networks for data applications,” 2014. [Online]. Available: https://www.itu.int/rec/T-REC-G.1030-201402-I/en. [30] M. Arman, “Analisa Kinerja Web Server E-learning Menggunakan Apache Benchmark dan Httperf,” J. Integr., vol. 8, no. 2, pp. 93–100, 2016. [31] A. Heryanto and Y. Hartati, “Tuneup Database Server Dalam Menjaga Stabilitas Performa Komputasi,” Annu. Res. Semin., vol. 4, no. 1, pp. 311–315, 2018. [32] H. James, “MySQL Query Cache for Performance, Avoid This When Tuning,” Linuxblog.io, 2018. [Online]. Available: https://linuxblog.io/mysql-query-cache-size-performance/. [33] W. Wagino, H. Maksum, W. Purwanto, W. Simatupang, R. Lapisa, and E. Indrawan, “Enhancing Learning Outcomes and Student Engagement: Integrating E-Learning Innovations into Problem-Based Higher Education,” Int. J. Interact. Mob. Technol., vol. 18, no. 10, pp. 106–124, May 2024. [34] “Interface Design for E-Learning: Investigating Design Characteristics of Colour and Graphic Elements for Generation Z,” KSII Trans. Internet Inf. Syst., vol. 15, no. 9, Sep. 2021. [35] B. Mulyanti, W. Purnama, and R. E. Pawinanto, “Distance Learning In Vocational High Schools During The Covid-19 Pandemic In West Java Province, Indonesia,” Indones. J. Sci. Technol., vol. 5, no. 2, pp. 271–282, 2020.

Share

COinS